

Kompaktmessgeräte für die Messung von Spannung, Strom, Temperatur und Brücken

Die Geräte der imc SPARTAN-N Reihe sind Kompaktmessgeräte für 32 bis 128 Kanäle. Abhängig von der bei der Bestellung gewählten Ausstattung mit analogen Messmodulen (T16, U16, B16, BCF16, LVDT16) erlauben die Geräte die präzise Messung von Spannungen, Strömen (20 mA), Temperaturen (Thermoelement und PT100) und Messbrücken bzw. DMS (DC und TF Modus) sowie LVDT.

imc SPARTAN-2

imc SPARTAN Geräte verfügen serienmäßig über 16 digitale Eingänge, 8 digitale Ausgänge sowie 4 Zähler-Eingänge für die Erfassung von inkrementalen Gebern

zur Drehzahl-, Geschwindigkeits- oder

Wegmessung. Weitere digitale I/O und analoge Ausgänge können bei der Geräte- bestellung ergänzt werden.

Weiterhin sind Erweiterungen möglich mit einer breiten Auswahl von Schnittstellen für Feldbussysteme aus den Bereichen Automotive,

imc SPARTAN-RACK

Avionik, Bahntechnik, Industrieautomatisierung (z.B. CAN FD, FlexRay, XCPoE, ARINC, MVB, EtherCAT u.a.).

Gerätebauformen und Varianten

Parameter	SPAR-2	SPAR-4	SPAR-6	SPAR-8	SPAR-RACK
Gehäuseart		Trageg	gehäuse		19" Baugruppenträger
Modulsteckplätze (zu je 2 Slots)	2	4	6	8	8
Max. mögliche Kanalzahl	32	64	96	128	128
Modular konfigurierbar	SPAR	TAN Module u	eitig vorkonfiguriert		
Maße in mm B x H x T	271	352	433	514	427
	155	155	155	155	133
	264	264	264	264	310
Gewicht (ca.) in kg	9	10,5	12,5	14,5	912

imc SPARTAN analoge Module

	Grö	sse	Anschluss		Abtas	trate	iso		Spann	ung		mA	Tei	mp	IC	P		Brücken-Modus		IS			
Modulname SPAR/xxx	Kanäle	Slots (1 Slot = 4 TE)	Stecker	TEDS	max. Abtastrate (pro Kanal)	analoge Bandbreite (-3dB)	isoliert (Spannung / TE)	Spannungsmessung	min. Spannungs Bereich (mV)	Spannung bis 10V	Spannung bis 50/60V	20mA Shunt Stecker	Thermoelement (TE)	PT100	ICP-Stecker	Sensor-Versorgung	Vollbrücke	Halbbrücke	Viertelbrücke	DC-Modus	Trägerfrequenz (5 kHz)	einfache SENSE	doppelte SENSE
			atur-Messung																				
T16	16	2	DSUB-15	•	5 Hz	1 Hz	•	•	50	•	•	•	•	•		0							
T16-TC-K	16	2	Thermo (grün)		5 Hz	1 Hz	•						•										
T16-TC-UNI	16	2	Thermo (weiss)		5 Hz	1 Hz	•	•	50	•	•		•										
U16	16	2	DSUB-15	•	500 Hz	200 Hz	•	•	50	•	•	•	•	•	0	0							
U16-TC-K	16	2	Thermo (grün)		500 Hz	200 Hz	•						•										
U16-TC-UNI	16	2	Thermo (weiss)		500 Hz	200 Hz	•						•										
Brücken- & D	MS-	& LV	DT-Messung																				
B16	16	4	DSUB-15	•	500 Hz	200 Hz			5	•		•			0	•	•	•	•	•		•	
BC16	16	2	DSUB-26-HD		500 Hz	200 Hz			5	•		•				•	•	•	•	•		•	
BCF16	16	4	DSUB-15	•	500 Hz	200 Hz		•	5	•	•	•			0	(●)	•	•	•	•	•	•	•
LVDT16	16	4	DSUB-15		500 Hz	50 Hz		•	500								•	•			•		•
LVDTC16	16	2	DSUB-26-HD		500 Hz	50 Hz		•	500							•	•	•			•		•

Legende: ● Standard, o optional, (●) limitiert

Technisches Datenblatt

Konditionierer

Zur isolierten Messung von Spannung und Temperatur gibt es die beiden Module **T16** und **U16**, welche sich in der maximalen Abtastrate unterscheiden. Diese beiden imc SPARTAN Module können wahlweise mit DSUB-15 Anschlüssen ausgestattet werden (Spannung und Temperatur), oder mit Thermobuchen (nur für Thermoelemente).

Zur Erfassung von Messbrücken und DMS sind die Module **B16** (mit DSUB-15) geeignet. Sie sind auch als C-Variante ("compact") verfügbar, welche durch die Ausrüstung mit High-Density Steckern DSUB-26-HD nur halb so breit ausfallen.

Ein weiteres Brückenmodul, **BCF16**, unterstützt neben DC-Brückenmodus auch Trägerfrequenz-Betrieb (CF: carrier frequency), und damit neben der Messung von DMS und Messbrücken auch den Betrieb von LVDT und induktiven Wegaufnehmen.

Schliesslich ist das preiswerte Konditioniermodul **LVDT16** verfügbar, das speziell für LVDT-Messungen (Schaevitz-Spulen nach Trafoprinzip und induktive Halbbrücken) ausgelegt ist und das ebenfalls alternativ in kompakter DSUB-26-HD Ausführung erhältlich ist (LVDTC16).

Ausstattung

Die SPARTAN Messgeräte arbeiten computergestützt oder autark mit USV und Selbststartmodus. Bei kurzzeitigem Ausfall der Stromversorgung wird die Geräteversorgung durch eine integrierte USV gepuffert, eine länger anhaltende Unterbrechung löst automatisch eine Datensicherung und ein selbsttätiges Abschalten aus.

Das optionale imc Online FAMOS erlaubt die Ausführung beliebiger Echtzeitverrechnungen, Datenanalysen und Steuerungsfunktionen direkt im Gerät. Basierend auf Signalprozessor-Technologie garantiert es Echtzeit-Reaktion und erlaubt auch komplette Prüfstandssteuerung: Dabei ist es mit direkter Formeleingabe einfach und ohne jede Programmierung konfigurierbar.

Die zugehörige integrierte Messtechniksoftware imc STUDIO erschließt den Geräten eine überaus vielseitige Funktionalität. Sie dient nicht nur als interaktive Betriebs-Software, sondern kann auch geschlossene Gesamtlösungen realisieren, vom Labor-Test über die mobile Datenlogger-Anwendung bis zum kompletten Industrie-Prüfstand.

Übersicht der verfügbaren Varianten

Standardversion		ET-Version	Eigenschaften						
Bestellbezeichnung	Artikel-Nr.	Artikel-Nr.							
Tragegehäuse									
SPAR/SPARTAN-2-N	11300140	11310XXX	2 freie SPARTAN Modulsteckplätze (4 Slots)						
SPAR/SPARTAN-4-N	11300141	11310XXX	4 freie SPARTAN Modulsteckplätze (8 Slots)						
SPAR/SPARTAN-6-N	11300142	11310XXX	6 freie SPARTAN Modulsteckplätze (12 Slots)						
SPAR/SPARTAN-8-N	11300143	11310XXX	8 freie SPARTAN Modulsteckplätze (16 Slots)						
19" Baugruppenträger (Rack	19" Baugruppenträger (Rack, 3 HE / 84 TE)								
SPAR/SPARTAN-R-N	11300144	nicht verfügbar	8 freie SPARTAN Modulsteckplätze (16 Slots)						

Zusatz-Optionen (Bestelloption ab Werk)

- Erweiterter Temperaturbereich (ET) für Betriebstemperaturen von -40°C bis 85°C bei zulässiger Betauung. ET-Versionen der Geräte und Module mit separater Artikel-Nr.
- Interner WLAN-Adapter
- HDD / SSD

Technisches Datenblatt

Module für imc SPARTAN-N

Sogenannte Konditioniermodule können individuell kombiniert werden. Bei der Bestellung durch den Kunden ist der Systemausbau aus vielfältigen Optionen wählbar und wird als Gesamtsystem ab Werk fest verbaut. Dazu gehören:

- analoge Messverstärker
- analoge Ausgänge
- digitale Ein- und Ausgänge
- Pulszähler für Inkrementalgeber

Weiterhin können bei der Gerätebestellung **Feldbusmodule** als fest verbaute Option vorgesehen werden. Dazu gehören neben Fahrzeug- und Industrie-Bussen auch ein anwendungsspezifisch programmierbares Interfacemodul (APPMOD) mit Ethernet und serieller Schnittstelle für kundenspezifische Lösungen zur Anbindung von Geräten, Telemetrie und Protokollen.

Feldbus-Module belegen in der Regel einen Geräte-Slot, entsprechend einem halben SPARTAN Modulsteckplatz. Dabei kann das erste (z.B. CAN FD Interface) in einen exklusiv dafür reservierten Slot verbaut werden. Alle weiteren belegen dann entsprechend die Steckplätze für Konditioniermodule. Die max. Anzahl ist dabei in jedem Fall auf 7 Feldbusmodule begrenzt. Weitere Informationen und technische Daten hierzu sind in separaten Datenblättern enthalten.

```
1 Standardmodul (z.B. U16) = 1 SPARTAN Steckplatz = 2 Slots = 2 \times 20,32 \text{ mm} = 40,64 \text{ mm} = 8 \text{ TE}
1 Feldbusmodul (z.B. CAN) = 1/2 SPARTAN Steckplatz = 1 Slot = 1 \times 20,32 \text{ mm} = 20,32 \text{ mm} = 4 \text{ TE}
```

Es werden Modul-Ausführungen für das SPARTAN Tragegehäuse und SPARTAN Baugruppenträger ("-R") unterschieden, die sich mechanisch bzgl. der Frontplatte leicht unterscheiden.

Eine integriertes **Sensorversorgungsmodul** mit einstellbaren Versorgungsspannungen ist als Erweiterung für U16 und T16 Module (mit DSUB-15 Anschlüssen) verfügbar und erfordert keinen zusätzl. Steckplatz.

Übersicht der verfügbaren analogen Module

Standardversion		ET-Version	61 .	- 16		
Bestellbezeichnung	Artikel-Nr.	Artikel-Nr.	Slots	Eigenschaften		
T16	Spannung un	d Temperatur	quasi-s	tatisch		
SPAR/T16	11300149	11310027	2	DSUB-15 (Thermoelement, PT100, Spannung)		
SPAR/T16-SUPPLY	11300xxx	11310xxx	2	DSUB-15, zusätzl. einstellbare Sensorversorgung 3 W		
SPAR/T16-TC-K	11300145	11310028	2	Thermoelement Typ K, TE-Stecker		
SPAR/T16-TC-N	11300146	11310XXX	2	Thermoelement Typ N, TE-Stecker		
SPAR/T16-TC-UNI	11300148	11310XXX	2	Thermoelement universelle Typen, TE-Stecker (Cu)		
U16	Spannung un	d Temperatur	dynami	isch		
SPAR/U16	11300150	11310029	2	DSUB-15 (Thermoelement, PT100, Spannung)		
SPAR/U16-SUPPLY	11300XXX	11310XXX	2	DSUB-15, zusätzl. einstellbare Sensorversorgung 3 W		
SPAR/U16-SUPPLY-6W	11300XXX	11310XXX	2	DSUB-15, zusätzl. einstellbare Sensorversorgung 6 W		
SPAR/U16-TC-K	11300151	11310030	2	Thermoelement Typ K, TE-Stecker		
SPAR/U16-TC-N	11300152	11310XXX	2	Thermoelement Typ N, TE-Stecker		
SPAR/U16-TC-UNI	11300154	11310XXX	2	Thermoelement universelle Typen, TE-Stecker (Cu)		
SPAR/U16-NTC850K	11300225	11310XXX	2	NTC-Messung bis max. 850 kΩ mit Iref 1,25 μA		
B16	Spannung, B	Spannung, Brücke und DMS: DC-Modus				
SPAR/B16	11300155	11310031	4	DSUB-15		

Standardversion		ET-Version			Fireweakaftan			
Bestellbezeichnung	Artikel-Nr.	Artikel-Nr.	Slots	Eigenschaften				
SPAR/BC16	11300156	11310032	2	DSUB-26-HD				
BCF16	Spannung, B	Spannung, Brücke und DMS: DC- und TF-Modus						
SPAR/BCF16	11300157	11310XXX	4	DC und TF-Modus, DSUB-15				
LVDT16	LVDT: indukt	iv, TF-Modus	-					
SPAR/LVDT16	11300158	11310XXX	4	DSUB-15				
SPAR/LVDTC16	11300159	11310XXX	2	DSUB-26-HD				

Übersicht der verfügbaren digitalen Module

Standardversion		ET-Version	Class	Firewookefter			
Bestellbezeichnung	Artikel-Nr.	Artikel-Nr.	Slots	Eigenschaften			
DIO-ENC-DAC	Multi-Funktio	on					
SPAR/DI16-DO8-ENC4	11300160	11310033	2	16 digitale Eingänge, 8 Ausgänge, 4 Zählereingänge			
SPAR/DI8-DO8- ENC4-DAC4	11300161	11310034	2	8 digitale Eingänge, 8 digitale Ausgänge, 4 Zählereingänge, 4 analoge Ausgänge			
DIO	Digitale Ein-	und Ausgänge					
SPAR/DI16	11300162	11310035	1	16 digitale Eingänge			
SPAR/DO16	11300163	11310036	1	16 digitale Ausgänge			
DAC	Analoge Aus	gänge					
SPAR/DAC8	11300164	11310037	1	8 analoge Ausgänge			

Übersicht der Erweiterungsmodule (ab Werk fest konfiguriert)

Standardversion		ET-Version	Class	Firework of the second
Bestellbezeichnung	Artikel-Nr.	Artikel-Nr.	Slots	Eigenschaften
Feldbus Module			,	
SPAR/CAN2	11300165	11310038	1	2 CAN Knoten
SPAR/CAN-FD	11300166	11310059	1	2 CAN FD Knoten
SPAR/LIN	11300167	11310039	1	2 LIN Knoten
SPAR/ARINC-8RX-4TX	11300175	11310XXX	1	ARINC Bus, 8x Receive, 4x Transmit
SPAR/FLEXRAY2	11300169	11310040	1	1 FlexRay Knoten
SPAR/XCPOE2-MASTER	11300170	11310XXX	1	XCPoE Master
SPAR/XCPOE2-SLAVE	11300171	11310XXX	1	XCPoE Slave
SPAR/ECAT-SLAVE	11300176	11310XXX	1	EtherCAT Slave
SPAR/MVB-EMD	11300172	11310XXX	1	MVB-Bus (Typ EMD)
SPAR/MVB-ESD	11300173	11310XXX	1	MVB-Bus (Typ ESD)
SPAR/MODBUS	11300XXX	11310XXX	1	Modbus Interface
SPAR/IPTCOM	11300174	11310XXX	1	IPTCom Interface
Spezialerweiterungen				
SPAR/ROADYN	11300177	11310XXX		Kistler RoaDyn 2000
SPAR/APPMOD-NET- COM	11300178	11310XXX		Ethernet, RS232/422/485

Die Versionen für das SPARTAN-RACK tragen das Suffix -R in der Bestellbezeichnung und haben separate Artikelnummern.

Technisches Datenblatt

Geräteerweiterungen

WLAN			
SPAR/WLAN-I	11300046	11310XXX	WLAN, 2,4 GHz

Gerätesoftware (nachrüstbar)						
SPAR/OFA	11300022	imc Online FAMOS				
SPAR/OFA-UP	11300023	Update für imc Online FAMOS auf OFA-Professional				
SPAR/VEC-DATB	11300027	Vector-Datenbankanbindung				
SPAR/imc-REMOTE	11300128	imc REMOTE				
SPAR/ECU-P	11300024	ECU Protokolle für CAN Interface				

Software-Optionen

	Funktionen	Lizen	Z
Software	Funktionalität	Lizenz Modell	inklusive
Betriebssoftware			
imc STUDIO Standard	Betriebssoftware, integrierte Prüf -und Messsoftware	PC	0
imc STUDIO Professional / Developer	individuelle Anpassungen, Skripting, Anwendungsentwicklung	PC	О
imc DEVICES	Firmware und Treiberpaket	Gerät	•
imc CANSAS	Konfiguration der imc CANSAS Module		•
imc SENSORS	Sensor Datenbank	PC	О
Echtzeit- Datenanalyse			
imc Online FAMOS	Echtzeit-Verrechnungen, "immediate results"	Gerät	О
imc Online FAMOS Professional	Echtzeit Steuerungsfunktionen , PID Regler etc.	Gerät	О
imc Online FAMOS Kits	Klassierung (Festigkeitsanalyse), Ordnungsanalyse	Gerät	О
Post Processing			
imc FAMOS Reader	Datenvisualisierung	PC	•
imc FAMOS Standard / Professional	Datenvisualisierung, Analyse, Reports, Skripting	PC	О
imc FAMOS Enterprise	inkl. Klassierung, Ordungsanalyse, ASAM-ODS Browser	PC	О
Remote Access			
imc LINK	Fernzugriff und Datentransfer	PC	О
imc REMOTE	Web Server, sicherer https-Zugriff auf Geräte	Gerät	0
CAN			
Vektor Datenbank	Vector Datenbank Anbindung	Gerät	О
ECU Protokolle	für CAN Interface: KWP 2000, CCP, OBD-2	Gerät	0
Anwendungs-Entwicklung			
LabView™ VI's	LabView VI Komponenten		•
imc COM	ActiveX Programmierschnittstelle (API)	PC	0
imc API	.NET Programmierschnittstelle (API) für imc STUDIO	PC	0

Zubehör, Stecker und Montage

Mitgeliefertes Zubehör

AC/DC Netzadapter 110-230V AC (mit passendem LEMO-Stecker)							
CRPL/AC-ADAPTER-150W	AC/DC Netzadapter, 24 V-DC / 150 W, Anschluss: LEMO.2B	10800029					

Dokumente

Zertifikate und Kalibrierprotokolle: Detaillierte Informationen zu mitgelieferten Zertifikaten, den konkreten Inhalten, zugrundeliegenden Normen (z.B. ISO 9001 / ISO 17025) und verfügbaren Medien (pdf etc.) sind der Webseite zu entnehmen, oder Sie kontaktieren uns direkt.

Optionales Zubehör

Versorgungs-Stecker									
ACC/POWER-PLUG2	DC Versorgungs-Stecker LEMO FGG.2B.302, mit Lötkelchen, max. 0,34 mm ²	13500024							
Montagematerial für feste Installationen (Befestigungswinkel)									
SPAR/BRACKET-CON	Befestigungselement 180°; zur Befestigung von Geräten übereinander	11300119							
SPAR/BRACKET-90	Befestigungselement 90°; zur Befestigung auf einer Unterlage	11300118							
SPAR/BRACKET-BACK	Rückwandbefestigung	11300120							
Sonstiges	Sonstiges								
ACC/SYNC-FIBRE	Stecker zur Synchronisation über LWL (ET)	13500156							

Weiteres Zubehör (siehe separate Zubehör-Preisliste)

- Empfohlene und verifizierte Flash-Speichermedien
- Externes Display (via DSUB-9)
- GPS-Empfänger (mit DSUB-9 Anschluss)

							٠,	16	I VDTC16
	Modul-Typen		9	91	91	:16)F1(DT.	Ę
			1	U	B1	BC	BC	2	
	DSUB-26-HD					•			•
							l		
Artikel #	Bestellbezeichnung	E							
		F		K	omp	atıb	el (•)	
n-Stecke	er für Signale								
13500174	ACC/DSUBM-DI4-8								
									H
									T
									r
13500167	ACC/DSUBM-T4	П	•	•					Г
			•	•					Г
					•		•	•	Г
			•	•					Г
13500180	ACC/DSUBM-I2				•		•		Г
:")									
13500195	ACC/DSUBM-HD-I4	П				•			Г
13500197	ACC/DSUBM-HD-B4					•			•
13500132	ACC/DSUB-HD26M					•			•
cker für	Signale (mit TED	S)							
13500190	ACC/DSUBM-TEDS-T4	✓	•	•					Г
13500189	ACC/DSUBM-TEDS-U4	✓	•	•					Г
13500191	ACC/DSUBM-TEDS-B2	✓			•		•	•	Г
		✓	•	•					
13500193	ACC/DSUBM-TEDS-I2	✓			•		•		
ungs-Ste	ecker								
13500032	ACC/DSUB-ICP4			•					
		✓			•		•		Ĺ
13500294	ACC/DSUBM-ICP2I-BNC-F	✓			•		•		L
13500268	ACC/DSUBM-QB2-PH				•				Γ
							Ш		L
13500211	ACC/DSUBM-ESD		•	•	•		•	•	Г
	13500174 13500173 13500177 13500177 13500166 13500180 13500180 13500192 13500193 13500193 13500193 13500193 13500193 13500193 13500193 13500193 13500294 13500268	## Restellbezeichnung n-Stecker für Signale 13500174 ACC/DSUBM-DI4-8 13500173 ACC/DSUBM-DO8 13500171 ACC/DSUBM-DO8 13500171 ACC/DSUBM-ENC4 13500167 ACC/DSUBM-DAC4 13500166 ACC/DSUBM-T4 13500168 ACC/DSUBM-I4 13500180 ACC/DSUBM-I2 13500195 ACC/DSUBM-HD-I4 13500197 ACC/DSUBM-HD-B4 13500192 ACC/DSUBM-HD-B4 13500193 ACC/DSUBM-TEDS-T4 13500194 ACC/DSUBM-TEDS-U4 13500195 ACC/DSUBM-TEDS-U4 13500196 ACC/DSUBM-TEDS-U4 13500197 ACC/DSUBM-TEDS-U4 13500198 ACC/DSUBM-TEDS-U4 13500199 ACC/DSUBM-TEDS-U4 13500191 ACC/DSUBM-TEDS-U4 13500192 ACC/DSUBM-TEDS-U4 13500193 ACC/DSUBM-TEDS-U4 13500193 ACC/DSUBM-TEDS-U4 13500194 ACC/DSUBM-TEDS-U4 13500195 ACC/DSUBM-TEDS-U4 13500196 ACC/DSUBM-TEDS-U4 13500197 ACC/DSUBM-TEDS-U4 13500198 ACC/DSUBM-TEDS-U4 13500199 ACC/DSUBM-TEDS-U4	Artikel # Bestellbezeichnung	DSUB-26-HD Artikel # Bestellbezeichnung n-Stecker für Signale 13500174 ACC/DSUBM-DI4-8 13500173 ACC/DSUBM-DO8 13500171 ACC/DSUBM-ENC4 13500167 ACC/DSUBM-DAC4 13500166 ACC/DSUBM-DAC4 13500167 ACC/DSUBM-T4 13500168 ACC/DSUBM-B2 13500180 ACC/DSUBM-H2 13500190 ACC/DSUBM-H2 13500191 ACC/DSUBM-HD-H4 13500192 ACC/DSUBM-TEDS-T4 13500193 ACC/DSUBM-TEDS-U4 13500191 ACC/DSUBM-TEDS-U4 13500192 ACC/DSUBM-TEDS-U4 13500193 ACC/DSUBM-TEDS-U4 13500294 ACC/DSUBM-ICP2I-BNC-S 13500294 ACC/DSUBM-ICP2I-BNC-S 13500294 ACC/DSUBM-ICP2I-BNC-F 13500268 ACC/DSUBM-QB2-PH	DSUB-26-HD Artikel # Bestellbezeichnung	DSUB-26-HD Artikel # Bestellbezeichnung n-Stecker für Signale 13500174 ACC/DSUBM-DI4-8	Artikel # Bestellbezeichnung	Artikel # Bestellbezeichnung Bestellbezeichnung	Artikel # Bestellbezeichnung

Technische Daten für alle Varianten

Anschlüsse	Anschlüsse					
Parameter	Wert	Bemerkungen				
PC / Netzwerk	RJ45	max. 100 m Kabel bei 100 MBit (nach IEEE 802.3)				
Ethernet TCP/IP	100 MBit					
Flash Wechselspeicher	CF-Card Slot	auch über Netzwerk auslesbar				
Interne Festplatte (HDD)	0	Option nur ab Werk: SSD oder magnetisch; 400 kS/s Datenspeicherung gilt für 16 Bit / Sample				
Interner WLAN-Adapter (optional)	1 Antenne IEEE 802.11g max. 54 MBit/s, 2,4 GHz					
Synchronisierung	BNC	isoliert (markiert mit gelbem Ring)				
Externes Display	DSUB-9					
Externes GPS-Modul	DSUB-9					
Versorgung	Typ LEMO.2B (2-polig)	Buchse kompatibel zu LEMO.FGG.2B.302				
Remote (Fernsteuerung Hauptschalter)	DSUB-15					
Programmierbare Status- Anzeige	6 LED (grün)	Ansteuerung über imc Online FAMOS				
Messsignal-Anschlüsse	Typ und Anzahl entsprechend der Ausrüstung mit Signalkonditionierung	üblicherweise DSUB-15				

Spannungsversorgung	Wert	Bemerkungen
DC Versorgung	10 V bis 32 V DC	galvanisch isoliert vom Gehäuse (CHASSIS)
DC-Eingang LEMO Typ	FGG.2B.302.CLAD 82ZN	
AC/DC Netzadapter	24 VDC, 150 W 110-230V AC 50-60 Hz	im Lieferumfang
Einschaltschwelle (typ.)	10,9 V	min. erforderliche Eingangsspannung zum Einschalten (Leerlauf)
Abschaltschwelle (typ.)	9,8 V	Eingangsspannung bei der auf interne USV- Pufferung umgeschaltet wird, bzw. die verzögerte automatische Abschaltung ausgelöst wird
Leistungsaufnahme	<130 W	je nach Modell und Ausstattung

USV und Datenintegrität		
Autarker Betrieb ohne PC	✓	
Automatischer Messbetrieb mit Selbststart	konfigurierbar	Timer, absolute Zeit, automatischer Start bei anliegender Versorgung
Auto-Datensicherung bei Stromausfall	~	Pufferung (USV) mit anschließendem "Auto- Shutdown": Auto-Stop der Messung, Datenspeicherung und Selbstabschaltung
Batteriepufferung / USV	integriert	mit automatischer Ladekontrolle
USV-Abdeckungsbereich	komplettes System	
USV Überbrückungszeit pro Spannungsausfall (Abschaltverzögerung)	30 s (Default), konfigurierbar	"Puffer-Zeitkonstante": Zeitdauer eines kontinuierlichen Spannungsausfalls, nach welchem eine automatische Abschaltung ausgelöst wird.
Mindestladedauer für 1 min. Pufferdauer	≤53 min.	bei entladener Batterie bei 23°C je nach Gerätevariante
Zusätzliche Leistungsaufnahme beim Laden	3,5 W (max.)	Gerät eingeschaltet
Ladeleistung (netto)	2,5 W (typ.)	Gerät eingeschaltet
Ladezeit / Entladezeit	Pufferzeit * 1,2 * (Gesamtleistung / 2,5 W)	Worst case Beispiel: Gesamtleistung des Systems 100 W, Pufferdauer 1 min., resultierende Ladedauer ≤ 4 min. (Ladezeitverhältnis 48:1)
USV Batterien		Bemerkungen
Akku-Typ	NiMH	
Effektive Pufferkapazität	≥55 Wh	typ. 23°C, vollgeladener Akku
Max. Pufferdauer	>30 min.	gesamte Überbrückungszeit je nach Gerätevariante Gesamtleistung ≤110 W
Ladezeit für vollständige Akku-Ladung	36 h	Gerät eingeschaltet
USV-Übernahmeschwelle (typ.)	9,8 V 11,1 V	Übernahme int. Pufferbatterie Zurückschalten auf externe Versorgung

Datenaufnahme, Trigger		
Parameter	Wert	Bemerkungen
Max. Summenabtastrate	400 kS/s	
Kanalindividuelle Abtastraten	wählbar in Stufung 1–2–5	
Anzahl Abtastraten: Analoge Kanäle, DI und Zähler	2	gleichzeitig in einer Konfiguration verwendbar
Anzahl Abtastraten: Feldbuskanäle	beliebig	
Anzahl Abtastraten:		weitere durch imc Online FAMOS
Virtuelle Kanäle	beliebig	erzeugte Raten (z.B. mittels Reduktion)
Monitorkanäle	✓ für alle Kanäle der Typen: Analog, DI und Zähler (Inkrementalgeber)	gedoppelte Kanäle mit unabhängiger Abtast- und Triggereinstellung
Intelligente Triggerfunktionen	~	z.B. logische Verknüpfung mehrerer Kanal-Ereignisse (Schwellwert, Bereich, Flanke) zu Start und Stopp-Triggern
Mehrfach getriggerte Datenaufnahmen	*	Multitrigger und Multischuss
Unabhängige Triggermaschinen	48	start/stop, Kanäle beliebig zuzuordnen

Technisches Datenblatt

Maximale An	zahl von Kanäle	n pro Gerä	it						
Aktivierte Kan	äle	5	12	Aktive Kanäle der aktuellen Konfiguration: Gesamtsumme von analogen, digitalen, Feldbus und virtuellen Kanä sowie evtl. Monitorkanälen			ı Kanälen,		
Aktive analoge	e Kanäle	1	98	Aktivierte analoge Kanäle der aktuellen Konfiguration (Summe aus primären Kanälen und evtl. Monitorkanälen)			aus		
Feldbuskanäle	•	10	000	Anzahl der definierten Kanäle (aktiv und passiv); Die in der aktuellen Konfiguration aktivierbaren Kanäle sind limitie durch die Gesamtzahl aller aktivierten Kanäle (512).			mitiert		
Prozessvektor	-Variablen	8	00	Einzelwertvariablen, welche jeweils die letzten aktuellen Messwerte enthalten. Zu jedem Kanal wird automatisch eine Prozessvektor-Varia angelegt.					
			ohne N	/lonitorkanäle			mit Mo	nitorkanälen	
Kanaltyp	bestimmt durch		mit -passiv)	davon aktiv	gesamt aktiviert		nit ·passiv)	davon aktiv	gesamt aktiviert
Analoge Kanäle	System- ausbau	Kanal	240	198		Kanal Monitor	240 240	198	
Inkremental-	System-	Kanal	16	16		Kanal	16	16	
geber	ausbau	Kallal	10	10		Monitor	16	16	
DIO/DAC-	System-	Port	16	16	512	Port	16	16	512
Ports	ausbau	Port	10	10		Monitor	16	16	312
Feldbus- Kanäle	flexibel	Kanal	1000	512		Kanal Monitor	1000	512	
Virtuelle Kanäle (OFA)	flexibel	-	-	512		-	-	512	

Belegung für Ports (Beispiele):

- ein DO-Modul (z.B. DO-16) belegt 1 Port
- ein DI8-DO8-ENC4-DAC4 Modul belegt 3 Ports
- ein DAC-Modul (z.B. DAC-8 oder DAC-4) belegt 1 Port

Monitorports: DI-Ports (bzw. Kanäle) haben Monitorports, DO/DAC dagegen nicht

Speicherung, Signalverarbeitung					
Parameter	Wert	Bemerkungen			
Flash Wechselspeicher-Medium	CF	empfohlene Medien erhältlich bei imc; es gilt der Temperaturbereich des Mediums			
Speicherung auf NAS (Netzwerkspeicher)	~	Alternativ zum Flash Wechselspeicher			
Beliebige Speichertiefe mit Pre- und Posttrigger	~	Pretrigger begrenzt durch Geräte-RAM (Ringspeicher); Posttrigger begrenzt nur durch Massenspeicher-Medien			
Ringspeicherbetrieb	~	zyklisch überschriebener Ringspeicher auf Massenspeicher-Medium			
Synchronisation	DCF 77	Master / Slave			
	GPS	via externen GPS-Empfänger			
	IRIG-B	ΠL			
	NTP	via Netzwerk			

Betriebsbedingungen	Betriebsbedingungen						
Parameter	Wert Bemerkungen						
Betriebsumgebung	trockene, nicht aggressive Umgebung im spez. Betriebstemperaturbereich						
Rel. Luftfeuchtigkeit	80% bis 31°C, über 31°C: linear abnehmend bis 50%	siehe IEC 61010-1					
Schutzart (Ingress Protection)	IP20						
Verschmutzungsgrad	2						
Betriebstemperatur (Standard)	-10°C bis +55°C	ohne Betauung					
Betriebstemperatur (erweitert, "ET" Version)	-40°C bis +85°C	Betauung temporär zulässig					
Schock- und Vibrationsfestigkeit	IEC 61373, IEC 60068-2-27 IEC 60062-2-64 Kategorie 1, Klasse A und B MIL-STD-810 Rail Cargo Vibration Exposure U.S. Highway Truck Vibration Exposure						
Erweiterte Schock- und Vibrationsfestigkeit	auf Anfrage	spezifische und erweiterte Prüfungen oder Zertifizierungen auf Anfrage					

Synchronisation und Zeitbasis

Zeitbasis eines einzelnen Geräts ohne externe Synchronisation					
Parameter	Wert typ.	min. / max. Bemerkungen			
Genauigkeit RTC		±50 ppm	nicht abgeglichen (Standard-Geräte), bei 25°C		
		1 μs (1 ppm)	abgeglichene Geräte (auf Anfrage), 25°C		
Drift	±20 ppm	±50 ppm	-40°C bis +85°C Betriebstemperatur		
Alterung		±10 ppm	bei 25°C; 10 Jahre		

Zeitbasis mit extern	Zeitbasis mit externer Synchronisation						
Parameter	GPS	DCF77	IRIG-B	NTP			
unterstützte Formate	NMEA / PPS ⁽¹⁾		B000, B001, B002, B003 ⁽²⁾	Version ≤4			
Genauigkeit		±1 μs		<5 ms nach ca. 12 h ⁽³⁾			
Jitter (max.)		±8 μs					
Spannungspegel	TTL (PPS ⁽¹⁾) RS232 (NMEA)	5 V TT	L Pegel				
Eingangswiderstand	1 kΩ (pull up)	30 kO (null un)				
Anschluss	DSUB-9 "GPS" nicht isoliert	20 kΩ (pull up) BNC "SYNC" (isoliert) (Prüfspannung 300 V, 1 min.)		RJ45 "LAN"			
Schirmpotential Anschluss		BNC: isolierter Signal-GND (markiert durch gelben Ring)					

Synchronisation übe	Synchronisation über mehrere Geräte mit DCF (Master/Slave)						
Parameter	Wert typ.	min. / max.	Bemerkungen				
max. Kabellänge		200 m	BNC Kabel RG58 (Kabellaufzeit berücksichtigen)				
max. Anzahl Geräte		20	nur Slave				
Gleichtaktspannung SYNC nicht-isoliert	0 V		BNC Schirm entspricht Systemmasse: Die Geräte müssen das gleiche Massepotential haben, sonst kann es zu Problemen bei der Signalqualität (Signalflanken) kommen. Abhilfe siehe ISOSYNC				
SYNC isoliert		max. 50 V	BNC Schirm: isoliert; zum störungsfreien Betrieb auch bei unterschiedlichen Massepotentialen (Erdschleifen)				
Spannungspegel	5 V						
DCF Ein-/Ausgang	"SYNC" A	Anschluss	BNC				

⁽¹⁾ PPS (Pulse per second): Sekundensignal mit Impuls >5 ms notwendig

⁽²⁾ Nur Auswertung der BCD Information

⁽³⁾ Max. Wert, wenn folgende Bedingung erfüllt: bei Erst-Synchronisation

Analoge Module

T16: Spannung und Temperatur quasi-statisch (isoliert)

Eingänge, Messmodi					
Parameter	Wert	Bemerkungen			
Eingänge	16				
Messmodi					
T16 (DSUB-15)	Spannungsmessung	Standardstecker (ACC/DSUBM-U4)			
	Strommessung	Strom-Stecker (ACC/DSUBM-I4)			
	Thermoelement, RTD (PT100)	Thermostecker (ACC/DSUBM-T4)			
Messmodus					
T16-TC-K	Thermoelemente Typ-K	TE-Stecker Typ K, grün			
T16-TC-N	Thermoelemente Typ-N	TE-Stecker Typ N, rosa			
T16-TC-UNI	Thermoelemente universal: Typen R, S, B, J, T, E, K, L, N	TE-Stecker UNI (Cu), weiss			
Breite	2 Slots				

Abtastrate, Bandbreite, TEDS				
Parameter	Wert		Bemerkungen	
Abtastrate	max. 5 Hz (200 ms) / Kanal		Interne Abtastung: 2 Hz Mit zusätzlicher Interpolation: 5 Hz	
			Bei Einstellung höherer Raten: Ausgabe gedoppelter Werte.	
			max. mögl. Eingangssignal-Frequenz: 1 Hz	
Bandbreite	1	Hz		
Auflösung	16	Bit		
Störunterdrückung @ 50 Hz (±2%)	49 Hz b	is 51 Hz	Störfrequenz	
bei Abtastrate: 1 Hz > 1 Hz	68 dB 34 dB		empfohlene Abtastrate 1 Hz andere Abtastraten > 1 Hz	
Bandbreite / max. Signalfrequenz vs. Störunterdrückung @ 50 Hz	Bandbreite Störunter- bzw. max. drückung Signalfrequenz ≥ 60 dB		Unterdrückung von ≥60 dB wird erreicht für:	
bei einer Abtastrate von:				
0,5 Hz 1 Hz	0,25 Hz 0,5 Hz	48,5 Hz 48,5 Hz	Störfrequenzen ≥48,5 Hz	
2 Hz 5 Hz	1 Hz 1 Hz	50 Hz 50 Hz	Störfrequenzen ≥50 Hz	
max. Einschwingzeit	max	1 s	Abtastrate 5 Hz; komplettes Einschwingen nach Eingangs-Sprung	
Synchronität	konstanter Zeitversatz zwischen zwei gleichartig konfigurierten Kanälen: max. 500 ms		Abtastrate ≤2 Hz	
TEDS	IEEE 1451.4 konform Class II MMI		insb. mit ACC/DSUBM-TEDS-xx (DS2433) nicht unterstützt: DS2431 (typ. IEPE/ICP Sensor)	
Kennlinien Verrechnung bzw. Linearisierung	benutzer (maximal 1023			

Allgemein				
Parameter	Wert typ.	min. / max.	Bemerkungen	
Isolation				
nominal	±6	50 V	gegen Systemmasse (Gehäuse, CHASSIS) und	
Prüfspannung	300 \	/ (10 s)	Kanal zu Kanal	
Überspannungsfestigkeit	±6	50 V	diff. Eingangsspannung, (dauerhaft)	
	ESD	2 kV	human body model	
		en Schutz: d dump ISO 7636	R _i =30 Ω, t _d =300 μs, t _r <60 μs	
Eingangskopplung	Γ	OC .		
Eingangskonfiguration	differentiell, isoliert		galvanisch isoliert zur Systemmasse (Gehäu CHASSIS)	
Eingangswiderstand	10 ΜΩ		Spannungsmodus (Bereich ≤±2 V), Temperaturmodus	
	1	ΜΩ	Spannungsmodus (Bereich ≥±5 V)	
	5	0 Ω	Strommodus (Strom-Stecker)	
Statischer Eingangsstrom	1 nA	10 nA		
Dynamischer Eingangsstrom	0,1 mA	1,5 mA	Spitzenwert des dyn. Eingangstroms (typ. bei 100 mV, max. bei 2 V)	
	30 nA	600 nA	mittlerer dyn. Eingangstrom (typ. bei 100 mV, max. bei 2 V)	
Eingangsstrom unter		1,5 mA	V _{in} >7 V im Bereich ≤±2 V oder Gerät	
Überspannung			ausgeschaltet	
zusätzliche Sensorversorgung				
Spannung	+5 V	±5%	unabhängig von integrierter	
verfügbarer Strom	>0,26 A	>0,2 A	Sensorversorgung, kurzschlussfest	
Innenwiderstand	1,0 Ω	<1,2 Ω	Leistung pro DSUB-Stecker	

Spannungsmessung					
Parameter	Wert typ.	min. / max.	Bemerkungen		
Messbereiche	±5 V / ±2 V / ±	/ ±25 V / ±10 V :1 V / ±500 mV 0 mV / ±50 mV			
Verstärkungsabweichung	<0,025%	<0,05%	von der Anzeige, b	ei 25°C	
Verstärkungsdrift		6 ppm/K	Bereiche ≤±2 V	über ges. Tempbereich	
		36 ppm/K	Bereiche ≥±5 V		
Nullpunktabweichung		<0,05%	vom Messbereich		
		<3 μV			
Nullpunktdrift		3 ppm/K	über gesamten Ter	mperaturbereich	
Linearitätsabweichung	<30	ppm	±10 V Messbereich	±10 V Messbereich	
Signalrauschen	<0,5 μV _{eff}		Abtastrate 5 Hz		
	<3,0 μV _{pkpk} (<1LSB)				
CMRR (common mode rejection	alle Abt	astraten			
ratio) IMR	>110 dB	3 (50 Hz)	Bereich ≤±2 V	$R_{Quelle} = 0 \Omega$	
	>95 dB	(50 Hz)	Bereich ≤±2 V	$R_{Quelle} = 100 \Omega$	
	>65 dB	(50 Hz)	Bereich ≥±5 V	$R_{Quelle} = 100 \Omega$	
Kanalisolation	<50 pF,	<100 nA	gegen Systemmasse (Erde)		
			Kanäle untereinander		
Kanaltrennung	alle Abt	astraten			
(crosstalk)	>116 dB	3 (50 Hz)	Bereich ≤±2 V	$R_{Quelle} = 0 \Omega$	
	>101 dB (50 Hz)		Bereich ≤±2 V	$R_{Quelle} = 100 \Omega$	
Unterdrückung von Rechteckflanken auf Nachbarkanälen	>123 dB bei Abtastrate 5 Hz		Bereich ≤±2 V	$R_{Quelle} = 100 \Omega$	
max. Quellimpedanz	5 kΩ				

Strommessung mit Shunt-Stecker							
Parameter	Wert typ.	min. / max.	Bemerkungen				
Messbereiche	1	mA / ±5 mA) mA / ±40 mA					
Shunt-Widerstand	50	Ω	externer Stecker ACC/DSUBM-I4				
Verstärkungsabweichung	<0,07 %	<0,15 %	von der Anzeige, bei 25°C				
Verstärkungsdrift	6 ppm/K		Bereiche ≤±2 V	über ges. Tempbereich			
	36 ppm/K		Bereiche ≥±5 V				
Nullpunktabweichung		<0,05%	vom Messbereich				
Nullpunktdrift		3 ppm/K	über gesamten Temp	eraturbereich			

Temperaturmessung - Thermoelemente						
Parameter	Wert typ.	min. / max.	Bemerkung			
Messmodus	R, S, B, J,	T, E, K, L, N				
Messbereiche	-270°C b	is 1370°C is 1100°C ois 500°C	Тур К			
Auflösung	0,063 K	(1/16 K)				
Messabweichung		<±0,5 K	Typ K, Bereich -150°C bis 1200°C			
(Verstärkung + Nullpunkt)		±0,05%	zzgl. vom angezeigten Wert			
Drift (Verstärkung + Nullpunkt)	±0,02 K/K·⊿T _a		$\Delta T_a = T_a-25^{\circ}C $ Umgebungstemperatur T_a			
Abweichung der Vergleichs- stellen-Kompensation		<±0,15 K	mit ACC/DSUBM-T4			
		<±0,5 K	Thermo-Buchse (grün) Typ K			
		<±0,7 K	Thermo-Buchse (weiß) bei Typ K			
		<±1 K	Thermo-Buchse (weiß) sonstige Typen			
Drift der Vergleichsstelle	±0,001 K/K⋅⊿T _a		$\Delta T_a = T_a-25^{\circ}C $ Umgebungstemperatur T_a			
Sensorbrucherkennung	Anzeige	"-2000°C"	bei offenem Eingang			

Temperaturmessung – PT100 (RTD)						
Parameter	Value	Bemerkung				
Messbereich	-200°C bis +850°C					
	-200°C bis +250°C					
Auflösung	0,063 K (1/16 K)					
Abweichung	<±0,1 K	–200°C bis +850°C,				
(Verstärkung + Nullpunkt)		4-Drahtanschluss				
	±0,05%	zzgl. vom Messwert (äquivalenter Widerstand)				
Drift	±0,01 K/K· ⊿T _a	$\Delta T_a = T_a-25^{\circ}C $ Umgebungstemperatur T_a				
(Verstärkung + Nullpunkt)						
Referenzstrom (PT100)	250 μΑ	nicht-isoliert (CHASSIS-Bezug)				

Sensorversorgung (T16-SUPPLY)					
Parameter	Wert ty	p. max.		max.	Bemerkungen
Konfigurationen	5 wäh	lbare E	instel	lungen	immer nur 5 wählbare Einstellungen:
					Standardauswahl: +5 V bis +24 V
Ausgangs-Spannung	Spannung	Stro	om	Nettoleistun	global wählbar für je 8 Kanäle pro Modul
	(+2,5 V)	580	mΑ	g	Auf Anfrage kann +12 V oder +15 V durch +2,5 V
	+5,0 V	580	mΑ	1,5 W	ersetzt werden.
	+10 V	300	mΑ	2,9 W	Vorzugsauswahl z.B. bei 2,5 V:
	+12 V	250	mΑ	3,0 W	+2,5 V, +5,0 V, +10 V, +12 V, +24 V
	+15 V	200	mΑ	3,0 W	
	+24 V	120	mΑ	3,0 W	Auf Anfrage: +15 V kann durch
	(±15 V)	190	mΑ	2,9 W	±15 V ersetzt werden
				3,0 W	
Kurzschlussschutz	unk	egren	zte Da	nuer	gegenüber Bezugsmasse der
					Ausgangsspannung
Genauigkeit der					an den Anschluss-Steckern, Leerlauf
Ausgangsspannung	<0,25 %			0,5 %	bei 25°C
				0,9 %	über vollen Temperaturbereich
				1,5 %	zzgl. bei optionaler bipolarer Ausgangs-Spannung
Max. kapazitive Last		>400	00 μF		2,5 V bis 10 V
		>100	00 μF		12 V, 15 V
		>30	0 μF		24 V

U16: Spannung und Temperatur dynamisch (isoliert)

Eingänge, Messmodi						
Parameter	Wert	Bemerkungen				
Eingänge 16						
Messmodi U16 (DSUB-15)	Spannungsmessung Strommessung Thermoelemente, RTD (PT100) stromgespeiste Sensoren (IEPE/ICP)	Standardstecker (ACC/DSUBM-U4) Strom-Stecker (ACC/DSUBM-I4) Thermostecker (ACC/DSUBM-T4) IEPE/ICP Erweiterungsstecker (ACC/DSUB-ICP4, nicht isoliert und ACC/DSUBM-ICP2I-BNC1, isoliert)				
Messmodus U16-TC-K U16-TC-N U16-TC-UNI	Thermoelemente Typ-K Thermoelemente Typ-N Thermoelemente universal: Typen R, S, B, J, T, E, K, L, N	TE-Stecker Typ K, grün TE-Stecker Typ N, rosa TE-Stecker UNI (Cu), weiss				
Breite	2 Slots					

Abtastrate, Bandbreite, Filter, TEDS					
Parameter	Wert	Bemerkungen			
Abtastrate	≤500 Hz	pro Kanal			
Bandbreite	0 Hz bis 200 Hz	-3 dB			
Filter (digital)					
Frequenz	1 Hz bis 200 Hz				
Charakteristik		Butterworth, Bessel			
Typ und Ordnung		Tiefpass: 8. Ordnung			
		Hochpass: 4.Ordnung			
		Bandpass: TP 4. und HP 4.Ordnung			
		Anti-Aliasing Filter:			
		Cauer 8. Ordnung mit f _g = 0,4 f _a			
Auflösung	16 Bit	interne Verarbeitung 24 Bit			
TEDS - Transducer	IEEE 1451.4 konform	insb. mit ACC/DSUBM-TEDS-xx (DS2433)			
Electronic Data Sheets	Class II MMI	nicht unterstützt wird: DS2431			
Kennlinien Verrechnung	benutzerdefiniert				
bzw. Linearisierung	(maximal 1023 Stützstellen)				

Bei Verwendung des 2-kanaligen IEPE-Steckers in Kombination mit den analogen Eingängen, die vier Kanäle pro Buchse zur Verfügung stellen, können nur die Kanäle 1 und 3 genutzt werden. Es wird nur die ICP Basis-Funktion unterstützt, siehe TD ACC/DSUBM-ICP2I-BNC.

Allgemein					
Parameter	Wert typ. min. / max.		Bemerkungen		
Isolation	1 1		Kanäle untereinander und gegen Systemmasse (Gehäuse, CHASSIS), sowie gegen gemeinsamen Bezug aller PT100 Stromquellen und TEDS.		
			PT100 Stromquellen sind nicht isoliert		
max. Gleichtakt-Spannung	±6	60 V			
Testspannung:	±300 \	V (10 s)			
Überspannungsfestigkeit	±6	60 V	differentielle Eingangspannung,dauerhaft		
	ESD	2 kV	human body model		
	Transient	en Schutz:			
	automotive load dump ISO 7637		R_i =30 Ω, t_d =300 μs, t_r <60 μs		
Eingangskopplung	С	DC .			
Eingangskonfiguration	differenti	ell, isoliert			
Eingangswiderstand	6,7	ΜΩ	Bereiche ≤±2 V oder Temperaturmodus		
	- -	MΩ Ο Ω	Bereiche ≥±5 V oder bei ausgeschaltetem Gerä mit Strom-Stecker ACC/DSUBM-I4		
Eingangsstrom			bei Betriebsbedingungen		
normal		1 nA	V _{in} >5 V bei Bereichen <±5 V oder bei		
bei Überspannung		1 mA	ausgeschaltetem Gerät		
zusätzliche Sensorversorgung			für IEPE (ICP)-Erweiterungsstecker		
Spannung	5 V	±5 %	unabhängig von optionaler		
verfügbarer Strom	>0,26 A	>0,2 A	Sensorversorgung, kurzschlussfest		
Innenwiderstand	1,0 Ω	<1,2 Ω	Leistung pro DSUB-Stecker		

Spannungsmessung					
Parameter	Wert typ.	min. / max.	Bemerkungen		
Messbereiche	±60 V / ±50 V / ±25 V / ±10 V ±5 V / ±2 V / ±1 V / ±500 mV ±250 mV / ±100 mV / ±50 mV				
Verstärkungsabweichung	<0,02 %	<0,05 %	von der Anzeige, b	ei 25 °C	
Verstärkungsdrift		6 ppm/K·ΔT _a 50 ppm/K ·ΔT _a	Bereiche ≤±2 V Bereiche ≥±5 V	über gesamten Temperaturbereich	
Nullpunktabweichung	0,02 %	<0,05 %	vom Messbereich,	vom Messbereich, bei 25 °C	
Nullpunktdrift	2,5 ppm/K ·∆T _a		über gesamten Temperaturbereich $\Delta T_a = T_a-25$ °C Umgebungstemperatur T_a		
Linearitätsabweichung	<120) ppm	Bereich ±10 V		
Signalrauschen	2,5 μV _{eff} 20 μV _{pkpk}		Bandbreite 0,1 Hz im Bereich ±50 mV	bis 1 kHz	
Gleichtaktunterdrückung IMR (isolation mode rejection)	140 dB 64 dB	>130 dB >60 dB	Bereiche ≤±2 V Bereiche ≥±5 V	$R_{Quelle} = 0 \Omega$, f=50 Hz	
Kanalisolation	>1 GΩ, <40 pF		gegen Systemmasse (Erde)		
	>1 GΩ, <10 pF		Kanäle untereinander		
Kanaltrennung (crosstalk)	>165 dB (50 Hz) >92 dB (50 Hz)		Bereiche ≤±2 V Bereiche ≥±5 V	R _{Quelle} ≤100 Ω	

Strommessung mit Shunt-Stecker						
Parameter	Wert typ.	min. / max.	Bemerkungen			
Messbereiche	±40 mA / ±20 mA / ±10 mA ±5 mA / ±2 mA / ±1 mA					
Shunt-Widerstand	50	Ω	externer Stecker A	CC/DSUBM-I4		
Eingangskonfiguration	differ	entiell				
Verstärkungsabweichung	<0,02 % <0,05 % <0,1 %		von der Anzeige, bei 25°C zzgl. Abweichung 50 Ω im Stecker			
Verstärkungsdrift		6 ppm/K ·∆T _a	Bereiche ≤±2 V über gesamten			
		50 ppm/K ·∆T _a	Bereiche ≥±5 V	Temperaturbereich		
Nullpunktabweichung	0,02 %	<0,05 %	vom Messbereich			
Nullpunktdrift		2,5 ppm/K ·∆T _a	über gesamten Temperaturbereich $\Delta T_a = T_a -25$ °C Umgebungstemperatur T_a			

Temperaturmessung - Thermoelemente				
Parameter	Wert typ. min. / max.		Bemerkungen	
Messmodus	R, S, B, J, T	, E, K, L, N		
Messbereiche	-270°C bis 1370°C -270°C bis 1100°C -270°C bis 500°C		Тур К	
Auflösung	0,063 K ((1/16 K)	16-Bit Integer	
Messabweichung (Verstärkung + Nullpunkt)		<±0,6 K	Typ K, Bereich -150°C bis 1200°C Typ T, Bereich -150°C bis 400°C Typ N, Bereich 380°C bis 1200°C	
		<±1,0 K	Typ K, Bereich -200°C bis -150°C Typ T, Bereich -200°C bis -150°C	
		<±1,5 K	Typ N, Bereich -200°C bis 380°C	
Drift (Verstärkung + Nullpunkt)	±0,02 K/K⋅⊿T _a		$\Delta T_a = T_a - 25$ °C Umgebungstemperatur T_a	
Abweichung der Vergleichsstellenkompensation		<±0,15 K	mit ACC/DSUBM-T4	
Drift der Vergleichsstelle	±0,001 K/K⋅⊿T _a		$\Delta T_a = T_a - 25^{\circ}C $ Umgebungstemperatur T_a	

Temperaturmessung – PT100					
Parameter	Wert	Bemerkungen			
Messbereiche	-200°C bis +850°C -200°C bis +250°C				
Auflösung	0,063 K (1/16 K)	16-Bit Integer			
Verstärkungsabweichung	<±0,05%	vom Messwert (äquivalenter Widerstand)			
Nullpunktabweichung	<±0,2 K	bei Vierleitermessung			
Nullpunktdrift	±0,01 K/K ⋅⊿T _a	$\Delta T_a = T_a - 25^{\circ}C $ Umgebungstemperatur T_a			
Sensorspeisung	250 μΑ	nicht isoliert			

Sensorversorgung (U16-SUPPLY)							
Parameter	Wert ty	p.	r	max.	Bemerkungen		
Konfigurationen	5 wä	ihlbare Einstellungen		5 wählbare Einstellungen		ngen	immer nur 5 wählbare Einstellungen: Standardauswahl: +5 V bis +24 V
Ausgangsspannung	Spannung (+2,5 V) +5,0 V +10 V +12 V +15 V +24 V (±15 V)	Strom 580 m. 580 m. 300 m. 250 m. 200 m. 120 m.	A A A A A	1,5 W 2,9 W 3,0 W 3,0 W 3,0 W 2,9 W 3,0 W	global wählbar für je 8 Kanäle pro Modul Auf Anfrage kann +12 V oder +15 V durch +2,5 V ersetzt werden. Vorzugsauswahl z.B. bei 2,5 V: +2,5 V, +5,0 V, +10 V, +12 V, +24 V Auf Anfrage kann +15 V durch ±15 V ersetzt werden. Bei der LEMO Variante entfällt bei dieser Wahl die TEDS Unterstützung.		
Kurzschlussschutz	uı	unbegrenzte Dauer			gegenüber Bezugsmasse der Ausgangsspannung		
Genauigkeit der Ausgangsspannung	<0,25 %	<0,25 %		0,5 % 0,9 % 1,5 %	an den Anschluss-Steckern, Leerlauf bei 25°C über vollen Temperaturbereich zzgl. bei optionaler bipolarer Ausgangsspannung		
Max. kapazitive Last		>4000 >1000 >300) μF		2,5 V bis 10 V 12 V, 15 V 24 V		

B16: Spannung, Brücke und DMS (DC-Modus)

Eingänge, Messmodi						
Parameter	Wert	Bemerkungen				
Eingänge	16					
Messmodi	Brückensensor	Brücken-Stecker (ACC/DSUBM-B2)				
B16 (DSUB-15)	Dehnungsmessstreifen (DMS)	Halb-, Viertel- und Vollbrücke				
	Spannungsmessung					
	Strommessung	Strom-Stecker (ACC/DSUBM-I2)				
	stromgespeiste Sensoren (IEPE/ICP)	IEPE/ICP Erweiterungsstecker ACC/DSUBM-ICP2I-BNC-S/-F, isoliert				
Messmodi	Brücken-Sensor	ACC/DSUBM-HD-B4				
BC16 (DSUB-26-HD)	Dehnungmessstreifen (DMS)					
	Spannungsmessung					
	Strommessung	Strom-Stecker (ACC/DSUBM-HD-I4)				
Breite	2 Slots	BC16 (4x DSUB-26-HD)				
	4 Slots	B16 (8x DSUB-15)				

Abtastrate, Bandbreite, Filter, TEDS					
Parameter	Wert	Bemerkungen			
Abtastrate	≤500 Hz	pro Kanal			
Bandbreite	0 Hz bis 200 Hz	-3 dB			
Filter (digital)					
Frequenz	1 Hz bis 200 Hz				
Charakteristik		Butterworth, Bessel			
Ordnung		Tiefpass und Hochpass: 8. Ordnung			
		Bandpass: TP und HP je 4.Ordnung			
		Anti-Aliasing Filter:			
		Cauer 8.Ordnung mit $f_g = 0.4 f_a$			
Auflösung	16 Bit	interne Verarbeitung 24 Bit			
TEDS - Transducer Electronic	IEEE 1451.4 konform	insb. mit ACC/DSUBM-TEDS-xx (DS2433)			
DataSheets (nur bei B16)	Class II MMI	nicht unterstützt: DS2431 (typ. IEPE/ICP Sensor)			
Kennlinien Verrechnung	benutzerdefiniert				
bzw. Linearisierung	(maximal 1023 Stützstellen)				

Allgemein				
Parameter	Wert typ.	min. / max.	Bemerkungen	
Überspannungsfestigkeit		±40 V	dauerhaft	
Eingangskopplung	Г	OC .		
Eingangskonfiguration	differentiell			
Eingangswiderstand	20 ΜΩ	±1%		
zusätzliche Sensorversorgung			nur bei der DSUB-15 Variante für IEPE/ICP Erweiterungsstecker	
Spannung	+5 V	±5%	unabhängig von integrierter	
verfügbarer Strom	0,26 A	0,2 A	Sensorversorgung, kurzschlussfest	
Innenwiderstand	1,0 Ω	<1,2 Ω	Leistung pro DSUB-Stecker	

Spannungsmessung			
Parameter	Wert typ.	min. / max.	Bemerkungen
Messbereiche	±10 V, ±5 V, ±2,5	5 V, ±1 V ±5 mV	
Verstärkungsabweichung	0,02%	0,05%	von der Anzeige, bei 25°C
Verstärkungsdrift	10 ppm/K·⊿T _a	30 ppm/K·⊿T _a	$\Delta T_a = T_a - 25$ °C Umgebungstemperatur T_a
Nullpunktabweichung			vom Messbereich, bei 25°C
	0,02%	≤0,05% ≤0,06% ≤0,15%	Bereiche >±50 mV Bereiche ≤±50 mV Bereiche ≤±10 mV
Nullpunktdrift	±0,7 μV/K·⊿T _a ±0,1 μV/K·⊿T _a	±6 μV/K·⊿T _a ±1,1 μV/K·⊿T _a	Bereich $\pm 10 \text{ V}$ bis 0,25 V Bereiche $\leq \pm 0,1 \text{ V}$ $\Delta T_a = T_a - 25^{\circ}\text{C} $ Umgebungstemperatur T_a
Nichtlinearität	10 ppm	50 ppm	ara
Gleichtaktunterdrückung (CMRR)			DC und f≤60 Hz
	110 dB 138 dB	>90 dB >132 dB	Bereich: ±10 V bis ±50 mV Bereich: ±25 mV bis ±5 mV
Signalrauschen	0,6 μV _{eff} 0,14 μV _{eff}	1,0 μV _{eff} 0,26 μV _{eff}	Bandbreite 0,1 Hz bis 1 kHz Bandbreite 0,1 Hz bis 10 Hz

Strommessung mit Shunt-Stecker				
Parameter	Wert typ.	min. / max.	Bemerkungen	
Messbereiche	±50 mA, ±20 mA, ±10 mA, ±5 mA, ±2 mA, ±1 mA			
Shunt-Widerstand	50	Ω	externer Stecker ACC/DSUBM-I2	
Überstromfestigkeit		±60 mA	dauerhaft	
Eingangskonfiguration	differentiell			
Verstärkungsabweichung	0,02%	0,06% 0,1%	von der Anzeige, bei 25°C zzgl. Abweichung 50 Ω im Stecker	
Verstärkungsdrift	15 ppm/K·∆T _a	55 ppm/K·∆T _a	$\Delta T_a = T_a - 25^{\circ}C $ Umgebungstemperatur T_a	
Nullpunktabweichung	0,02%	0,05%	vom Messbereich, bei 25°C	
Rauschstrom	0,6 nA _{eff} 0,15 nA _{eff}	10 nA _{eff} 0,25 nA _{eff}	Bandbreite 0,1 Hz bis 1 kHz Bandbreite 0,1 Hz bis 10 Hz	

Brückenmessung				
Parameter	Wert typ.	min. / max.	Bemerkungen	
Modus	D	C		
Messmodi	Voll-, Halb-, \	Viertelbrücke	Bei Viertelbrückenmessung ist eine Brückenversorgung von ≤5 V zu wählen.	
Messbereiche	·	', ±500 mV/V, ±100 mV/V		
bei Brückenversorgung: 10 V	±0,	5 mV/V		
bei Brückenversorgung: 5 V	±1	. mV/V		
bei Brückenversorgung: 2,5 V	±2	mV/V	(optional)	
bei Brückenversorgung: 1 V	±5	mV/V	(optional)	
Brückenversorgung	10 V 5 V	±0,5% ±0,5%	tatsächlicher Wert wird im Brückenmodus dynamisch erfasst und kompensiert	
(optional)	2,5 V und 1 V			
Min. Brückenimpedanz	120 Ω , 10 mH Vollbrücke 60 Ω , 5 mH Halbbrücke			
Max. Brückenimpedanz	5 kΩ			
Viertelbrückenergänzung	120 Ω,	, 350 Ω	intern, per Software umschaltbar	
Eingangswiderstand	20 ΜΩ	±1%	differentiell, Vollbrücke	
Verstärkungsabweichung	0,02%	0,05%	von der Anzeige, bei 25°C	
Nullpunktabweichung	0,01%	0,02%	vom Messbereich, bei 25°C nach automatischer Brücken- Symmetrierung	
automatisch Shunt-Kalibrierung (Kalibriersprung)	0,5 mV/V	±0,2%	bei 120 Ω und 350 Ω	
Kabelwiderstand für Brücken (ohne Rückleitung)		5 Ω 2 Ω	10 V Speisung 120 Ω 5 V Speisung 120 Ω	

Sensorversorgung				
Parameter	Wert	typ.	max.	Bemerkungen
Konfigurationen	5 w	rählbare E	instellungen	immer nur 5 wählbare Einstellungen:
				Standardauswahl: +5 V bis +24 V
Ausgangsspannung	Spannung	Strom	Nettoleistung	global wählbar für je 8 Kanäle pro Modul
	(+1 V) (+2,5 V) +5,0 V +10 V +12 V +15 V +24 V (±15 V)	580 mA 580 mA 580 mA 300 mA 250 mA 200 mA 120 mA	0,6 W 1,5 W 2,9 W 3,0 W 3,0 W 3,0 W 2,9 W 3,0 W	Auf Anfrage sind +2,5 V und +1 V Einstellungen verfügbar, z.B. durch Ersetzen der +12 V oder der +15 V Einstellung. Ein frei wählbares Set aus 5 Einstellungen ist wählbar. Vorzugsauswahl: +24 V, +12 V, +10 V, +5,0 V, +2,5 V +15 V, +10 V, +5,0 V, +2,5 V, +1 V Auf Anfrage: +15 V kann durch ±15 V ersetzt werden. Damit entfällt die interne Strom- und Viertelbrückenmessung.
Kurzschlussschutz		unbegrenz	zte Dauer	gegenüber Bezugsmasse der Ausgangsspannung "-VB"
Genauigkeit der				an den Anschluss-Steckern, Leerlauf
Ausgangsspannung	<0,2	5 %	0,5 %	bei 25°C
			0,9 %	über vollen Temperaturbereich
			1,5 %	zzgl. bei optionaler bipolarer Ausgangsspannung
Kompensation von Kabelwiderständen	I	3-Leiter Regelung: SENSE Leiter an Rückführung (–VB: Versorgungs-Masse)		rechnerische Kompensation bei Brückenmessung
Max. kapazitive Last		>400 >100 >300	0 μF	2,5 V bis 10 V 12 V, 15 V 24 V

BCF16: Spannung, Brücke und DMS (DC und TF-Modus)

Parameter	Wert	Bemerkungen
Eingänge	16	
Messmodi	Brückensensor	Brücken-Stecker (ACC/DSUBM-B2)
	Dehnungsmessstreifen (DMS)	Halb-, Viertel- und Vollbrücke
	LVDT	induktive Brückensensoren, TF
	Spannungsmessung	Spannung- oder Brückenmodus global einstellbar für alle vier Kanäle
	Strommessung	Strom-Stecker (ACC/DSUBM-I2)
	stromgespeiste Sensoren (IEPE/ICP)	IEPE/ICP Erweiterungsstecker ACC/DSUBM-ICP2I-BNC-S/-F, isoliert
Breite	4 Slots	8x DSUB-15

Abtastrate, Bandbreite, Filter, TEDS						
Parameter	Wert	Bemerkungen				
Abtastrate	≤500 Hz	pro Kanal				
Bandbreite	0 Hz bis 200 Hz	-3 dB -3 dB				
Filter (digital)						
Frequenz	1 Hz bis 200 Hz					
Charakteristik		Butterworth, Bessel				
Ordnung		Tiefpass und Hochpass: 8. Ordnung Bandpass: TP und HP je 4. Ordnung				
		Anti-Aliasing Filter:				
		Cauer 8.Ordnung mit $f_g = 0.4 f_a$				
Auflösung	16 Bit	interne Verarbeitung 24 Bit				
TEDS - Transducer Electronic DataSheets	IEEE 1451.4 konform Class II MMI	insb. mit ACC/DSUBM-TEDS-xx (DS2433) nicht unterstützt: DS2431 (typ. IEPE/ICP Sensor)				
Kennlinien Verrechnung bzw. Linearisierung	benutzerdefiniert (maximal 1023 Stützstellen)					

Volle Sensor-TEDS Unterstützung, incl. dem Typ DS2431, der in den meisten aktuellen IEPE-Sensoren eingesetzt wird, ist nur bei Modulen der Geräteplattformen imc CRONOSflex (CRFX) und imc CRONOS-XT (CRXT) gegeben.

Allgemein			
Parameter	Wert typ.	min. / max.	Bemerkungen
Überspannungsfestigkeit		±50 V ±80 V	dauerhaft (Differenz- und SENSE-Eingänge) kurzzeitig
Eingangswiderstand	10 MΩ 1 MΩ		Bereiche ±5 mV bis ±2 V Bereiche ±5 V bis ±50 V und bei ausgeschaltetem Gerät
Eingangsstrom	40 nA		
Eingangskapazität	300 pF		
zusätzliche Sensorversorgung			für IEPE (ICP)-Erweiterungsstecker
Spannung verfügbarer Strom	+5 V >0,26 A	±5 % >0,2 A	unabhängig von integrierter Sensorversorgung, kurzschlussfest
Innenwiderstand	1,0 Ω	<1,2 Ω	Leistung pro DSUB-Stecker

Spannungsmessung			
Parameter	Wert typ.	min. / max.	Bemerkungen
Messbereiche	±500 mV, ±250	V, ±5 V, ±2 V, ±1 V, 0 mV, ±100 mV, /, ±10 mV, ±5 mV	
Verstärkungsabweichung	0,02 %	≤0,05 %	von der Anzeige
Verstärkungsdrift	60 ppm /K	<100 ppm /K	
Nullpunktabweichung	0,02 %	≤0,05 % ≤0,1 % ≤0,2 %	vom Messbereich Bereiche ≥±25 mV Bereiche =±10 mV Bereiche =±5 mV
Nullpunktdrift	0,05 μV /Κ	0,3 μV /Κ	Messbereich 5 mV
Nichtlinearität	<200	ppm	
Max. Gleichtakteingangs- spannung	1	60 V ,8 V	Bereich: ±50 V bis ±5 V Bereich: ±2 V bis ±5 mV
Gleichtaktunterdrückung (CMRR) Bereich: ±5 mV bis ±25 mV ±50 mV bis ±100 mV ±250 mV bis ±2 V ±5 V bis ±50 V ±5 mV bis ±2 V ±5 V bis ±50 V alle Bereiche	>100 dB >68 dB	>120 dB >110 dB 95 dB >54 dB >90 dB >54 dB >50 dB	DC f ≤ 50 Hz f = 5 kHz
SNR (signal to noise ratio)	>8 >8 >7	0 dB 8 dB 2 dB 5 dB 9 dB	FullScale/RMS-Noise (gesamte Bandbreite) Bereich ±100 mV bis ±50 V Bereich ±50 mV Bereich ±25 mV Bereich ±10 mV Bereich ±5 mV
Eingangsrauschen	16 nV/√Hz _{rms} 16 μV _{pk-pk} 2 μV _{rms} 0,6 μV _{pk-pk}		DC-Modus (Bereich ±5 mV) Spektr. Rauschdichte bei 1 kHz 0 Hz bis 10 kHz 0 Hz bis 10 kHz 0,1 Hz bis 10 Hz

Strommessung mit Shunt-Stecker			
Parameter	Wert	Bemerkungen	
Messbereiche	±40 mA, ±20 mA, ±10 mA, ±5 mA, ±2 mA, ±1 mA, ±400 μA, ±200 μA, ±100 μA		
Shunt-Widerstand	50 Ω	ACC/DSUBM-12	

Brückenmessung				
Parameter	Wert (ty	o. / max.)	Bemerkungen	
Modus	DC	, TF		
Geeignete Aufnehmer (Sensoren)	piezoresistive Bri	OT, -, Viertelbrücke, ückenaufnehmer, ometer	direkt anschließbar	
Messmodi	Voll- Halb-, \	/iertelbrücke		
Messbereiche Brücken	±2 mV/V bi	s ±400 mV/V s ±800 mV/V s ±2000 mV/V	bei Brückenversorgung: 5 V 2,5 V 1 V	
Brückenversorgung DC TF (5 kHz)	1 V; 2,5 V; 5 V	(symmetrisch) 5 V (peak)	global für 4 Kanäle einstellbar entspricht ±0,5 V, ±1,25 V, ±2,5 V entspricht RMS: 0,7 V, 1,8 V, 3,5 V	
Interne Viertelbrücken- ergänzung	120 Ω,	. 350 Ω	wahlweise	
min. Brückenimpedanz		H Vollbrücke Halbbrücke	Brückenversorgung = 1 V bis 5 V, I _{Last} ≤42 mA	
max. Brückenimpedanz	5 kΩ			
Verstärkungsabweichung	<0,0)5 %	vom Messwert	
Nullpunktabweichung nach Brückenabgleich	<0,0)2 %	vom Messbereich	
Nullpunktdrift	0,01 μV/V /Κ	0,06 μV/V /K	DC-Vollbrücke (Brückenversorgung=5 V, 1 mV/V Bereich) ohne ext. Brückenoffset	
Drift der Brücken- symmetrierung	50 ppm/K	<90 ppm/K	vom kompensierten Betrag	
äquivalente Nullpunktdrift durch abgeglichenen ext. Brücken-offset	0,05 μV/V/K	0,09 μV/V/Κ	Vollbrücke (DC oder TF), ext. Brückenoffset = 1 mV/V 1 mV/V Messbereich	
Halbbrückendrift (int. Halbbrücke)	0,5 μV/V/K	1 μV/V/K	DC oder TF	
Brückenabgleich-Bereich	≥Messbereich jedoch mindestens: ≥±5 mV/V ≥±10 mV/V ≥±25 mV/V		bei Brückenversorgung = 5 V bei Brückenversorgung = 2,5 V bei Brückenversorgung = 1 V	
Max. Kabellänge	500 m (einf	ache Länge)	$A = 0.14 \text{ mm}^2$, $R = 130 \text{ m}\Omega/\text{m}$, 65 Ω	

Brückenmessung				
Parameter	Wert (typ. / max.)	Bemerkungen		
Kabelkompensation				
Vollbrücke / Halbbrücke	4-Leiter-Technik 3-Leiter-Technik mit Shunt-Kalibrierung	beliebige Kabel für symmetrische (gleichartige) Kabel einmalige nicht-adaptive Kompensation		
Viertelbrücke	volle Kompensation in 3-Leiter-Technik	einschließlich Verstärkungskorrektur		
Automatische Shunt- Kalibrierung (Kalibriersprung)	0,5 mV/V	bei 120 Ω und 350 Ω Brücken		
Eingangsrauschen (Brücke) DC-Vollbrücke		Bereich: 1 mV/V (mit Brückenversorgung=5 V)		
	$3 \mu V/V_{pkpk'}$ 0,39 $\mu V/V_{rms}$	0 Hz bis 10 kHz		
	0,9 μV/V _{pkpk} , 0,12 μV/V _{rms}	1 kHz, Tiefpass-Filter		
	0,3 μV/V _{pkpk} , 0,04 μV/V _{rms}	100 Hz, Tiefpass-Filter		
	0,1 μV/V _{pkpk}	10 Hz, Tiefpass-Filter		
DC-Halb-/Viertelbrücke	3,3 μV/V _{pkpk} , 0,45 μV/V _{rms}	0 Hz bis 10 kHz		
	1,1 μ V/V _{pkpk} , 0,15 μ V/V _{rms}	1 kHz, Tiefpass-Filter		
	$0.35 \mu V/V_{pkpk}, 0.05 \mu V/V_{rms}$	100 Hz, Tiefpass-Filter		
	$0.3 \mu V/V_{pkpk}$	10 Hz, Tiefpass-Filter		
TF-Vollbrücke, Halbbrücke	3,5 μV/V _{pkpk} , 0,47 μV/V _{rms}	0 Hz bis 10 kHz		
	1,7 μ V/V _{pkpk} , 0,22 μ V/V _{rms}	1 kHz, Tiefpass-Filter		
	$0.6 \mu V/V_{pkpk'} 0.07 \mu V/V_{rms}$	100 Hz, Tiefpass-Filter		
	0,3 μV/V _{pkpk}	10 Hz, Tiefpass-Filter		

LVDT16: TF-Modus (induktive Wegsensoren)

Eingänge, Messmodi, Anschlusstechnik			
Parameter	Wert	Bemerkungen	
Eingänge	16		
Messmodi	LVDT Brückenmodus	Trägerfrequenz 5 kHz	
	Spannungsmessung		
Anschlusstechnik			
LVDT16	8x DSUB-15	2 Kanäle pro Stecker, empfohlener Stecker: ACC/DSUBM-B2	
LVDTC16	4x DSUB-26-HD	4 Kanäle pro Stecker, empfohlener Stecker: ACC/DSUBM-HD-B4	
Breite	2 Slots	LVDTC16 (4x DSUB-26-HD)	
	4 Slots	LVDT16 (8x DSUB-15)	

Abtastrate, Bandbreite, Filter			
Parameter	Wert	Bemerkungen	
Abtastrate	≤500 Hz	pro Kanal	
Bandbreite	0 Hz bis 50 Hz	zulässige Bandbreite des mechanischen Signals	
Filter (digital) Frequenz Charakteristik Ordnung	1 Hz bis 20 Hz	Butterworth, Bessel Tiefpass 6. Ordnung	
Auflösung	16 Bit	interne Verarbeitung 24 Bit	
Kennlinien Verrechnung bzw. Linearisierung	benutzerdefiniert (maximal 1023 Stützstellen)		

Allgemein			
Parameter	Wert typ. min. / max.		Bemerkungen
Blockisolation	(nominal)		galvanisch blockisoliert gegen System-masse (CHASSIS) keine kanalweise Isolation
Max. Gleichtakt-Spannung	±!	5 V	Differenz zwischen einzelnen Kanälen
Überspannungsfestigkeit	ESD 2 kV Transienten Schutz		
Eingangsstrom			Spannungsmodus, statisch
normaler Betrieb	0,2 nA	25 nA	
bei Überspannung	1 mA		
ausgeschaltet	≤5 mA		
Linearitätsabweichung	<30 ppm		±2 V Bereich, Spannungsmodus
zusätzliche Sensorversorgung	+5 V (max. 160 mA / Stecker) nicht isoliert		nur bei der DSUB-15 Variante

Parameter	Wert typ.	min. / max.	Bemerkungen
Modus	7	ΓF	Trägerfrequenz 5 kHz
Brückenkonfiguration	Vollb	rücke	LVDT-Sensoren ("Schaevitz", Transformator- Prinzip)
	Halbl	orücke	induktive HB-Sensoren ("Wegtaster")
Messbereiche		mV/V, ±200 mV/V, mV/V, ±20 mV/V	Brückenversorgung = 2,5 V
		mV/V, ±500 mV/V, 00 mV/V, ±50 mV/V	Brückenversorgung = 1 V
Brückenversorgung (VB)	2,5 \	/, 1 V	Peak, Sinussignal, kanalindividuell einstellbar
	max.	28 mA	kurzschlussfest
Minimale Brückenimpedanz	50 Ω,	10 mH	Brückenversorgung = 1 V
	120 Ω,	10 mH	Brückenversorgung = 2,5 V
Kabelkompensations-Verfahren	symmetrische	±SENSE-Signale	adaptive Kompensation
Nullpunkt Kompensationsbereich		≥±100% vom Bereich	vom ausgewählten Bereich
		9%	±2000 mV/V (Brückenversorgung = 1 V)
		9%	±800 mV/V (Brückenversorgung = 2,5 V)
Eingangswiderstand	6,7 ΜΩ	±1%	
Verstärkungsabweichung	<0,025%	<0,05%	von der Anzeige
Verstärkungsdrift		15 ppm/K·∆T _a	$\Delta T_a = T_a - 25 \text{ °C} $; Umgebungstemperatur T_a
Nullpunktabweichung	<0,02%	<0,05%	vom ausgewählten Messbereich, nach automatischem Brückenabgleich
Nullpunktdrift		1 μV/V /K·ΔT _a	Vollbrücke, kein externer Sensoroffset
			$\Delta T_a = T_a - 25 \text{ °C} $; Umgebungstemperatur T_a
Halbbrückendrift	0,5 μV/V /°C	1 μV/V /°C	interne Halbbrückenergänzung
Max. Kabelwiderstand	<6	0 Ω	je Zuleitung
	<46	50 m	mit Kabel: 0,14 mm ² , 130 m Ω /m, AWG26
Eingangsrauschen	5 μV/V _{rms}		Brückenmodus (Brückenversorgung = 1 V) Bandbreite 0,1 Hz bis 50 Hz

Spannungsmessung			
Parameter	Wert typ.	min. / max.	Bemerkungen
Messbereiche	±5 V, ±2 V, ±	1 V, ±500 mV	
Eingangskopplung	Г	OC .	
Eingangskonfiguration	differ	entiell	
Eingangswiderstand	6,7	ΜΩ	Bereiche ≤±2 V
(differentiell)	1	ΜΩ	Bereich ±5 V
Verstärkungsabweichung	<0,025%	<0,05%	von der Anzeige, bei 25°C
Verstärkungsdrift		15 ppm/K·∆T _a	Bereiche ≤±2 V
		50 ppm/K·∆T _a	Bereich ±5 V
			$\Delta T_a = T_a - 25^{\circ}C $; Umgebungstemperatur T_a
Nullpunktabweichung	<0,02%	<0,05%	vom Messbereich
Nullpunktdrift		0,6 μV/K·ΔT _a	Bereiche ≤±2 V
		30 μV/K·∆T _a	Bereich ±5 V
			$\Delta T_a = T_a - 25^{\circ}C $; Umgebungstemperatur T_a
CMRR	>95 dB	(50 Hz)	R _{Quelle} = 0 Ω
Signalrauschen			Bandbreite 0,1 bis 50 Hz
	<2,6	μV_{eff}	
	<15 μV _{pkpk}		

Digitale Module

imc SPARTAN Geräte sind bereits serienmäßig mit 16 digitalen Eingängen, 8 digitalen Ausgängen und 4 Pulszählereingängen für Inkrementalgeber ausgerüstet.

Für das Modul (DI16-DO8-ENC4) ist bereits ein Steckplatz (2 Slots) fest reserviert, er geht nicht in die Zahl der frei belegbaren Steckplätze ein. Weitere Ausführungen dieses Moduls können jedoch auch noch zusätzlich in freie Steckplätze konfiguriert werden, ebenso wie weitere Varianten von digitalen Eingängen (DI), digitalen Ausgängen (DO) und analogen Ausgängen (DAC).

Die im folgenden gelisteten technischen Eigenschaften gelten dabei allgemein, die jeweilige Zahl von Bits bzw. Kanälen hängt vom konkreten Modultyp ab.

Digitale Eingänge

Parameter	Wert	Bemerkungen
Kanäle / Bits	16 oder 8	Gruppe von 4 Bit potentialgetrennt, gemein.
	je nach <u>Ausführung</u> 4	Bezugspotential ("LCOM") für eine Gruppe
Konfigurationsmöglichkeit	TTL oder 24 V Eingangsspannungspegel	am DSUB global für 8 Bits konfigurierbar:
		Brücke von LCOM nach LEVEL: TTL-Pegel LEVEL offen: 24 V-Pegel
Abtastrate	≤10 kHz	
Isolationsfestigkeit	±50 V	getestet ±200 V
		isoliert gegenüber Systemmasse (CHASSIS),
		Versorgung und untereinander
Eingangskonfiguration	differentiell	
Eingangsstrom	max. 500 μA	
Schaltschwelle	1,5 V (±200 mV)	5 V Pegel
	8 V (±300 mV)	24 V Pegel
Schaltzeit	<20 μs	
Versorgung HCOM	5 V max. 100 mA	hat Bezug zum Konfigurationssignal "LEVEL", sonst galvanisch getrennt vom System
Anschlusstechnik	DSUB-15	ACC/DSUBM-DI4-8

Digitale Ausgänge

Parameter	w	ert	Bemerkungen
Kanäle / Bits	8 oder 16		Gruppe von 8 Bit potentialgetrennt, gemein.
	je nach <u>Aus</u>	führung 4	Bezugspotential ("LCOM") für eine Gruppe
Isolationsfestigkeit	±5	0 V	gegen Systemmasse (CHASSIS)
Ausgangskonfiguration	•	egentakt) oder -drain	 am DSUB global für 8 Bits konfigurierbar: Brücke von OPDRN nach LCOM: totem-pole OPDRN offen: open-drain
Ausgangspegel	Т	TL	interne potentialfreie Versorgungsspannung
		der _{ext} -0,8 V	durch Anschluss einer externen Versorgungs- spannung U _{ext} an "HCOM", U _{ext} = 5 V bis 30 V
Zustand nach Systemstart	Hochohmig (High-Z)		unabhängig von Ausgangskonfiguration (OPDRN-Pin)!
Aktivierung der Ausgangsstufe nach Systemstart	bei erstmaliger Vorbereitung der Messung		mit im Experiment einstellbaren Anfangszuständen (High / Low) in der gewählten Ausgangskonfiguration (OPDRN-Pin)
Max. Ausgangsstrom (typ.)	HIGH LOW		
TTL	15 mA 0,7 A		
24 V-Logik	22 mA	0,7 A	
open-drain		0,7 A	externe Freilaufdiode bei induktiver Last nötig
open-drain mit intern. 5 V Versorgung	160 mA		für alle Ausgänge
Ausgangsspannung	HIGH	LOW	bei Laststrom:
TTL	>3,5 V ≤0,4 V		I _{high} = 15 mA, I _{low} ≤0,7 A
24 V-Logik (U _{ext} = 24 V)	>23 V ≤0,4 V		I _{high} = 22 mA, I _{low} ≤0,7 A
Interne Versorgungsspannung	5 V, 160 m	nA (isoliert)	an Klemmen verfügbar
Schaltzeit	<10	0 μs	
Anschlusstechnik	DSU	B-15	ACC/DSUBM-DO8

ENC4: Pulszähler für Inkrementalgeber

Parameter	Wert		Bemerkungen
Kanäle	4 + 1		4 Einzelspuren oder zusammenfassen von je zwei
	(5 Spuren)		Spuren zu einem Zweispurkanal; 1 Index-Kanal
Messmodus	Weg, Winkel (diff. oder absolut), Geschwindigkeit, Drehzahl, Ereignis, Frequenz, Zeit		
Abtastrate	≤50 kHz		pro Kanal
Zeitauflösung der Messung	31,25 ns		Zählfrequenz 32 MHz
Auflösung der Daten	16 Bit		
Eingangskonfiguration	differentiell		
Eingangswiderstand	100 kΩ		
Eingangs-Spannungsbereich	±10 V		differentiell
Gleichtakt-Eingangsspannung	min11 V	max. +25 V	
Schaltschwelle	-10 V bis +10 V		Kanalindividuell einstellbar
Hysterese	min. 100 mV		Kanalindividuell einstellbar
analoge Bandbreite	500 kHz		-3 dB (full power)
analoges Filter	Bypass (ohne Filter), 20 kHz, 2 kHz, 200 Hz		einstellbar (pro Kanal) Butterworth, 2.Ordnung
Schaltverzögerung	500 ns		Aussteuerung: 100 mV Rechteck
CMRR	70 dB 60 dB	50 dB 50 dB	DC, 50 Hz 10 kHz
Verstärkungsabweichung	<1%		vom Eingangsspannungsbereich (25 °C)
Nullpunktabweichung	<1%		vom Eingangsspannungsbereich (25 °C)
Überspannungsfestigkeit	±50 V		dauerhaft gegen Systemmasse (CHASSIS)
Sensorversorgung	+5 V, 300 mA		nicht isoliert (Bezug: GND, CHASSIS)
Anschlusstechnik	DSUB-15		ACC/DSUBM-ENC4

Analoge Ausgänge

Parameter	Wert typ.	min. / max.	Bemerkungen
Kanäle	4 oder 8 (je nach Ausführung 4)		
Ausgangspegel	±10 V		
Laststrom	max. ±10 mA / Kanal		
Auflösung	16 Bit		15 Bit no missing codes
Nichtlinearität	±2 LSB	±3 LSB	
Max. Ausgabefrequenz	50 kHz		
Analoge Bandbreite	50 kHz		-3 dB, Tiefpass 2. Ordnung
Verstärkungsabweichung	<±5 mV	<±10 mV	-40 °C bis 85 °C
Nullpunktabweichung	<±2 mV	<±4 mV	-40 °C bis 85 °C
Anschlusstechnik	DSUB-15		ACC/DSUBM-DAC4