

imc BUSDAQ / BUSLOG

Handbuch Version 3 R 6 - 17.10.2018

Vorwort

Vielen Dank, dass Sie sich für unser Produkt entschieden haben. Wir wünschen Ihnen viel Erfolg bei der Erfüllung Ihrer Messaufgaben mit Hilfe Ihrer Hard- und Software. Wenn Sie Fragen haben, die Sie mit Hilfe der Handbücher nicht beantworten können, wenden Sie sich bitte an unsere Hotline (hotline@imctm.de).

Haftungsausschluss

Diese Unterlagen wurden mit großer Sorgfalt erstellt und auf Übereinstimmung mit der beschriebenen Hard- und Software geprüft. Dennoch können Abweichungen und Fehler nicht ausgeschlossen werden, sodass wir für die vollständige Übereinstimmung keine Gewähr übernehmen.

Für Verbesserungsvorschläge an unsere Hotline sind wir dankbar (hotline@imc-tm.de).

Technische Änderungen bleiben vorbehalten.

Copyright

© 2018 imc Test & Measurement GmbH, Deutschland

Diese Dokumentation ist geistiges Eigentum von imc Test & Measurement GmbH. imc Test & Measurement GmbH behält sich alle Rechte auf diese Dokumentation vor. Es gelten die Bestimmungen des "imc Software-Lizenzvertrags".

Die in diesem Dokument beschriebene Software darf ausschließlich gemäß der Bestimmungen des "imc Software-Lizenzvertrags" verwendet werden.

imc Software und Microsoft® Windows

imc Software Produkte laufen auf dem Betriebssystem Microsoft® Windows.

GPL Sourcen

Einige Komponenten der imc Messgeräte verwenden Software, die unter der GNU General Public License (GPL) lizenziert sind. Falls Sie ein Kopie der verwendeten GPL Sourcen erhalten möchten, setzen Sie sich bitte mit unserer Hotline in Verbindung.

1 Allgemeines	4
1.1 Hinweise / Qualitätsmanagement	4
1.2 imc Kundendienst / Hotline	6
1.3 Betriebsanleitung	7
1.4 Haftungsbeschränkung	7
1.5 Garantie	7
1.6 Vor der Inbetriebnahme	7
1.7 Wartungs- und Servicehinweis	8
1.8 Sicherheit	8
1.9 Nach dem Auspacken	10
1.10 Transport	10
1.11 Lagerung	10
1.12 Reinigung	10
2 Inbetriebnahme des Gerätes	. 11
2.1 Bei Gebrauch	11
2.2 Versorgung	11
2.3 Erdung, Schirmung	14
2.4 Sicherungen (Verpolschutz)	15
2.5 Akkumulatoren, Batterien und Sicherungen	15
2.6 LEDs und Beeper	16
3 Einführung	. 17
<u> </u>	
3.1 imc BUSDAQ / BUSLOG Familie	
	17
3.1 imc BUSDAQ / BUSLOG Familie	17 18
3.1 imc BUSDAQ / BUSLOG Familie	17 18 18
3.1 imc BUSDAQ / BUSLOG Familie	17 18 18 19
3.1 imc BUSDAQ / BUSLOG Familie 3.2 Bediensoftware 3.3 Abtastrate 3.4 Geräteübersicht	17 18 18 19
3.1 imc BUSDAQ / BUSLOG Familie 3.2 Bediensoftware 3.3 Abtastrate 3.4 Geräteübersicht 3.5 Geräte Optionen	17 18 18 19 19
3.1 imc BUSDAQ / BUSLOG Familie 3.2 Bediensoftware 3.3 Abtastrate 3.4 Geräteübersicht 3.5 Geräte Optionen 3.6 Beschaltung / Pinbelegung CTRL-Buchse	17 18 19 19 31
3.1 imc BUSDAQ / BUSLOG Familie 3.2 Bediensoftware 3.3 Abtastrate 3.4 Geräteübersicht 3.5 Geräte Optionen 3.6 Beschaltung / Pinbelegung CTRL-Buchse 3.7 Digitale Ein- und Ausgänge DIO bei imc BUSDAQ-X	17 18 19 19 31 33
3.1 imc BUSDAQ / BUSLOG Familie 3.2 Bediensoftware 3.3 Abtastrate 3.4 Geräteübersicht 3.5 Geräte Optionen 3.6 Beschaltung / Pinbelegung CTRL-Buchse 3.7 Digitale Ein- und Ausgänge DIO bei imc BUSDAQ-X 3.8 Feldbus Verkabelung	17 18 19 19 31 33 36
3.1 imc BUSDAQ / BUSLOG Familie 3.2 Bediensoftware 3.3 Abtastrate 3.4 Geräteübersicht 3.5 Geräte Optionen 3.6 Beschaltung / Pinbelegung CTRL-Buchse 3.7 Digitale Ein- und Ausgänge DIO bei imc BUSDAQ-X 3.8 Feldbus Verkabelung 4 Technische Daten	17 18 19 19 31 36 38
3.1 imc BUSDAQ / BUSLOG Familie 3.2 Bediensoftware 3.3 Abtastrate 3.4 Geräteübersicht 3.5 Geräte Optionen 3.6 Beschaltung / Pinbelegung CTRL-Buchse 3.7 Digitale Ein- und Ausgänge DIO bei imc BUSDAQ-X 3.8 Feldbus Verkabelung 4 Technische Daten 4.1 imc BUSDAQ-2 / imc BUSDAQ-X / imc BUSLOG	17 18 19 19 31 33 36 38
3.1 imc BUSDAQ / BUSLOG Familie 3.2 Bediensoftware 3.3 Abtastrate 3.4 Geräteübersicht 3.5 Geräte Optionen 3.6 Beschaltung / Pinbelegung CTRL-Buchse 3.7 Digitale Ein- und Ausgänge DIO bei imc BUSDAQ-X 3.8 Feldbus Verkabelung 4 Technische Daten 4.1 imc BUSDAQ-2 / imc BUSDAQ-X / imc BUSLOG 4.2 Weitere technische Angaben	17 18 19 19 31 33 36 38 39
3.1 imc BUSDAQ / BUSLOG Familie 3.2 Bediensoftware 3.3 Abtastrate 3.4 Geräteübersicht 3.5 Geräte Optionen 3.6 Beschaltung / Pinbelegung CTRL-Buchse 3.7 Digitale Ein- und Ausgänge DIO bei imc BUSDAQ-X 3.8 Feldbus Verkabelung 4 Technische Daten 4.1 imc BUSDAQ-2 / imc BUSDAQ-X / imc BUSLOG 4.2 Weitere technische Angaben 5 Anschluss-Stecker	17 18 19 19 31 33 36 38 38 39
3.1 imc BUSDAQ / BUSLOG Familie 3.2 Bediensoftware 3.3 Abtastrate 3.4 Geräteübersicht 3.5 Geräte Optionen 3.6 Beschaltung / Pinbelegung CTRL-Buchse 3.7 Digitale Ein- und Ausgänge DIO bei imc BUSDAQ-X 3.8 Feldbus Verkabelung 4 Technische Daten 4.1 imc BUSDAQ-2 / imc BUSDAQ-X / imc BUSLOG 4.2 Weitere technische Angaben 5 Anschluss-Stecker 5.1 Pinbelegung der Feldbusse	17 18 19 19 31 33 36 38 39 45 49
3.1 imc BUSDAQ / BUSLOG Familie 3.2 Bediensoftware 3.3 Abtastrate 3.4 Geräteübersicht 3.5 Geräte Optionen 3.6 Beschaltung / Pinbelegung CTRL-Buchse 3.7 Digitale Ein- und Ausgänge DIO bei imc BUSDAQ-X 3.8 Feldbus Verkabelung 4 Technische Daten 4.1 imc BUSDAQ-2 / imc BUSDAQ-X / imc BUSLOG 4.2 Weitere technische Angaben 5 Anschluss-Stecker 5.1 Pinbelegung der Feldbusse 5.2 DSUB-9 Pinbelegung	17 18 19 19 31 33 36 38 38 45 46 49
3.1 imc BUSDAQ / BUSLOG Familie 3.2 Bediensoftware 3.3 Abtastrate 3.4 Geräteübersicht 3.5 Geräte Optionen 3.6 Beschaltung / Pinbelegung CTRL-Buchse 3.7 Digitale Ein- und Ausgänge DIO bei imc BUSDAQ-X 3.8 Feldbus Verkabelung 4 Technische Daten 4.1 imc BUSDAQ-2 / imc BUSDAQ-X / imc BUSLOG 4.2 Weitere technische Angaben 5 Anschluss-Stecker 5.1 Pinbelegung der Feldbusse 5.2 DSUB-9 Pinbelegung 5.3 CTRL-Buchse Pinbelegung	17 18 19 19 31 33 36 38 38 39 45 46 49
3.1 imc BUSDAQ / BUSLOG Familie 3.2 Bediensoftware 3.3 Abtastrate 3.4 Geräteübersicht 3.5 Geräte Optionen 3.6 Beschaltung / Pinbelegung CTRL-Buchse 3.7 Digitale Ein- und Ausgänge DIO bei imc BUSDAQ-X 3.8 Feldbus Verkabelung 4 Technische Daten 4.1 imc BUSDAQ-2 / imc BUSDAQ-X / imc BUSLOG 4.2 Weitere technische Angaben 5 Anschluss-Stecker 5.1 Pinbelegung der Feldbusse 5.2 DSUB-9 Pinbelegung 5.3 CTRL-Buchse Pinbelegung 5.4 DI/DO Pinbelegung (DSUB-15) 6 Lieferumfang	17 18 19 19 31 33 36 38 38 45 46 49 50
3.1 imc BUSDAQ / BUSLOG Familie 3.2 Bediensoftware 3.3 Abtastrate 3.4 Geräteübersicht 3.5 Geräte Optionen 3.6 Beschaltung / Pinbelegung CTRL-Buchse 3.7 Digitale Ein- und Ausgänge DIO bei imc BUSDAQ-X 3.8 Feldbus Verkabelung 4 Technische Daten 4.1 imc BUSDAQ-2 / imc BUSDAQ-X / imc BUSLOG 4.2 Weitere technische Angaben 5 Anschluss-Stecker 5.1 Pinbelegung der Feldbusse 5.2 DSUB-9 Pinbelegung 5.3 CTRL-Buchse Pinbelegung 5.4 DI/DO Pinbelegung (DSUB-15)	17 18 19 19 31 36 . 38 38 39 45 45 50 51

1 Allgemeines

1.1 Hinweise / Qualitätsmanagement

Qualitätsmanagement

Management System ISO 9001:2015

imc Test & Measurement GmbH ist seit Mai 1995
DIN-EN-ISO-9001 zertifiziert. Aktuelle Zertifikate,
Konformitätserklärungen und Informationen zu unserem
Qualitätsmanagementsystem finden Sie unter www.imc-tm.de/qualitaetssicherung.

imc Gewährleistung

Es gelten die Allgemeinen Geschäftsbedingungen der imc Test & Measurement GmbH.

ElektroG, RoHS 2, WEEE, CE

Verweis

Die Herstellererklärung zu <u>ElektroG, RoHS, WEEE</u> und die <u>CE-Konformitätserklärungen</u> finden auf Sie auf der imc Webseite: <u>www.imc-tm.de</u>

Produktverbesserung und Änderungswünsche

Helfen Sie uns die Dokumentation zu verbessern:

- Welche Begriffe oder Beschreibungen sind unverständlich?
- Welche Ergänzungen und Erweiterungen schlagen Sie vor?
- Wo haben sich inhaltliche Fehler eingeschlichen?
- Welche Rechtschreib- und Tippfehler haben Sie gefunden?

Antworten und sonstige Anregungen richten Sie an die Hotline 6 (Telefon / E-Mail) oder schriftlich an: imc Test & Measurement GmbH, Voltastraße 5 in 13355 Berlin

Hinweise zu Funkentstörung

imc BUSDAQ / BUSLOG erfüllt die EMV-Bestimmungen für uneingeschränkten Einsatz im Industriebereich.

Alle weiteren Produkte, die an vorliegendes Gerät angeschlossen werden, müssen nach einer Einzelgenehmigung der zuständigen Behörde, in Deutschland BNetzA Bundesnetzagentur (früher BMPT-Vfg. Nr. 1046/84 bzw. Nr. 243/91) oder EG-Richtlinie 2014/30/EU funkentstört sein. Produkte, welche diese Forderung erfüllen, sind mit einer entsprechenden Herstellerbescheinigung versehen bzw. tragen das CE-Zeichen oder Funkschutzzeichen.

Produkte, welche diese Bedingungen nicht erfüllen, dürfen nur mit Einzelgenehmigung der BNetzA betrieben werden.

Alle an das Gerät angeschlossenen Signalleitungen müssen geschirmt und der Schirm geerdet werden.

Bei der Prüfanordnung zur EMV-Messung waren alle angeschlossenen Leitungen, für die eine Schirmung vorgesehen ist, mit einem Schirm versehen, der einseitig mit dem geerdeten Gerät verbunden wurde. Beachten Sie bei Ihrem Messaufbau diese Bedingung, um hohe Störfestigkeit und geringe Störaussendung zu gewährleisten.

FCC-Hinweis

Dieses Gerät hat in Tests die Grenzwerte eingehalten, die in Abschnitt 15 der FCC-Bestimmungen (in 47 CFR 15.105) für digitale Geräte der Klasse B festgeschrieben sind. Diese Grenzwerte sehen für die Installation im Wohnbereich einen ausreichenden Schutz vor gesundheitlichen Strahlen vor. Geräte dieser Klasse erzeugen und verwenden Hochfrequenzen und können diese auch ausstrahlen. Sie können daher, wenn sie nicht den Anweisungen entsprechend installiert und betrieben werden, Störungen des Rundfunkempfanges verursachen. In Ausnahmefällen können bestimmte Installationen aber dennoch Störungen verursachen. Sollte der Radio- und Fernsehempfang beeinträchtigt sein, was durch Einschalten und Ausschalten des Gerätes festgestellt werden kann, so empfehlen wir die Behebung der Störung durch eine oder mehrere der folgenden Maßnahmen:

- Richten Sie die Empfangsantenne neu aus.
- Vergrößern Sie den Abstand zwischen Gerät und Empfänger.
- Stecken Sie den Netzstecker des Gerätes in eine andere Steckdose ein, so dass das Gerät und der Empfänger an verschiedenen Stromkreisen angeschlossen sind.
- Falls erforderlich, setzen Sie sich mit unserem Kundendienst in Verbindung oder ziehen Sie einen erfahrenen Radio- oder Fernsehtechniker zu Rate.

Änderungen

Laut FCC-Bestimmungen ist der Benutzer darauf hinzuweisen, dass Geräte, an denen nicht von imc ausdrücklich gebilligte Änderungen vorgenommen werden, nicht betrieben werden dürfen.

Kabel und Leitungen

Zur Einhaltung der Grenzwerte für Geräte der Klasse B gemäß Teil 15 der FCC-Bestimmungen müssen alle am Messgerät angeschlossenen Signalleitungen geschirmt und der Schirm angeschlossen sein.

Unfallschutz

Es wird bestätigt, dass imc BUSDAQ / BUSLOG in allen Produktoptionen gemäß dieser Beschreibung den Bestimmungen der Unfallverhütungsvorschrift "Elektrische Anlagen und Betriebsmittel" (DGUV Vorschrift 3)* beschaffen ist.

Diese Bestätigung dient ausschließlich dem Zweck, das Unternehmen davon zu entbinden, das elektrische Betriebsmittel vor der ersten Inbetriebnahme prüfen zu lassen (§ 5 Abs. 1, 4 der DGUV Vorschrift 3). Zivilrechtliche Gewährleistungs- und Haftungsansprüche werden durch diese Regelung nicht geregelt.

* früher BGV-A3

Hinweise und Warnvermerke beachten

Dieses Gerät entspricht den einschlägigen Sicherheitsbestimmungen. Das Meßsystem wurde mit aller Sorgfalt und entsprechend den Sicherheitsvorschriften der Konformitätserklärung konstruiert, hergestellt und vor der Auslieferung stückgeprüft und hat das Werk in einwandfreiem Zustand verlassen. Um diesen Zustand zu erhalten und um einen gefahrlosen Betrieb sicherzustellen, muss der Anwender die Hinweise und Warnvermerke beachten. Dadurch schützen Sie sich und vermeiden Schäden am Gerät.

Lesen Sie bitte vor dem ersten Einschalten die technische Bedienungsanleitung sorgfältig durch.

Warnung

Vor dem Berühren von Gerätebuchsen und mit ihnen verbundenen Leitungen ist auf die Ableitung statischer Elektrizität zu achten. Beschädigungen durch elektrostatische Spannungen werden durch die Garantie nicht abgedeckt.

Umgebungs-Temperatur

Die Grenzen der Umgebungs-Temperatur können nicht pauschal angegeben werden, da sie von vielen Faktoren der konkreten Anwendung und Umgebung abhängen, wie Luftstrom/Konvektion, Wärmestrahlungsbilanz in der Umgebung, Montagestruktur, Systemzusammenstellung/Einzeln oder Block (Klick), angeschlossene Kabel, Betriebsart etc. Dem wird Rechnung getragen, indem stattdessen Angaben zur Betriebs-Temperatur gemacht werden. Darüber hinaus können auch für elektronische Bauteile keine scharfen Grenzen vorausgesagt werden. Grundsätzlich gilt, dass die Zuverlässigkeit bei Betrieb unter extremen Bedingungen abnimmt (forcierte Alterung). Die Angaben zur Betriebs-Temperatur stellen die äußersten Grenzen dar, bei denen die Funktion aller Bauteile noch garantiert werden kann.

1.2 imc Kundendienst / Hotline

Wenn Sie Probleme oder Fragen haben, hilft Ihnen unser Kundendienst bzw. unsere Hotline gern weiter:

imc Test & Measurement GmbH

Hotline Berlin: +49 (0)30 / 467090-26
Hotline Frankfurt: +49 (0)6172 / 59672-40

E-Mail: hotline@imc-tm.de
Internet: www.imc-tm.de

Internationale Vertriebspartner

Die internationalen Vertriebspartner finden Sie im Internet unter www.imc-tm.de/partner/distributoren.

Hilfreich für Ihre Anfrage:

Sie helfen uns bei Anfragen, wenn Sie die Seriennummer Ihrer Geräte, sowie die Versionsbezeichnung der Software nennen können. Diese Dokumentation sollten Sie ebenfalls zur Hand haben. Vielen Dank!

- Die Seriennummer des Gerätes finden Sie z.B. auf dem Typ-Schild auf dem Gerät.
- Die Versionsbezeichnung der Software finden Sie in dem Info-Dialog.

1.3 Betriebsanleitung

Diese Betriebsanleitung gibt wichtige Hinweise zum Umgang mit dem Gerät. Voraussetzung für sicheres Arbeiten ist die Einhaltung aller angegebenen Sicherheitshinweise und Handlungsanweisungen.

Darüber hinaus sind die für den Einsatzbereich des Gerätes geltenden örtlichen Unfallverhütungsvorschriften und allgemeinen Sicherheitsbestimmungen einzuhalten.

Diese Betriebsanleitung beschreibt ausschließlich das Gerät, **nicht** dessen **Bedienung mit der Software!** Die Anleitung der Bediensoftware entnehmen Sie dem zugehörigen Handbuch. Lesen Sie die Betriebsanleitung vor Beginn aller Arbeiten sorgfältig durch!

1.4 Haftungsbeschränkung

Alle Angaben und Hinweise in der Betriebsanleitung wurden unter Berücksichtigung der geltenden Normen und Vorschriften, dem Stand der Technik sowie unserer langjährigen Erkenntnisse und Erfahrungen zusammengestellt.

Der Hersteller übernimmt keine Haftung für Schäden aufgrund:

- Nichtbeachtung der Betriebsanleitung
- Nichtbestimmungsgemäßer Verwendung
- Weiterhin gelten die Allgemeinen Geschäftsbedingungen der imc Test & Measurement GmbH

1.5 Garantie

Jedes Gerät durchläuft vor dem Verlassen der Produktion mehrere Qualitätstests mit etwa 24h "Burn-In". Dabei wird fast jeder Frühausfall erkannt. Dennoch ist es möglich, das ein Bauteil erst nach längerem Betrieb ausfällt. Daher wird auf alle imc-Produkte eine Funktionsgarantie von zwei Jahren gewährt. Voraussetzung ist, dass im Gerät keine Veränderung vorgenommen wurde.

Bei unbefugtem Eingriff in das Gerät erlischt jeglicher Garantieanspruch.

1.6 Vor der Inbetriebnahme

Wenn das Gerät aus kalter Umgebung in den Betriebsraum gebracht wird, kann Betauung auftreten. Warten Sie, bis das Gerät an die Umgebungstemperatur angepasst und absolut trocken ist, bevor Sie es in Betrieb nehmen. Hat sich während des Transports oder der Lagerung Kondenswasser gebildet, muss das Gerät ca. 2 h akklimatisiert werden, bevor es in Betrieb genommen wird. Dies gilt insbesondere für Geräte ohne ET.

Für Ihre Messungen empfehlen wir Ihnen eine Aufwärmphase des Gerätes von mindestens 30 min.

Vorhandene Lüftungslöcher an den Geräteseiten sind freizuhalten, um einen Wärmestau im Geräteinneren zu vermeiden.

Die Geräte sind zum Gebrauch in sauberen, trockenen Räumen bestimmt. Sie dürfen nicht bei besonders großem Staub- bzw. Feuchtigkeitsgehalt der Luft, bei Explosionsgefahr sowie bei aggressiver chemischer Einwirkung betrieben werden.

1.7 Wartungs- und Servicehinweis

Es ist keine besondere Wartung erforderlich.

Hinweis

Die angegebenen maximalen Fehler gelten für 1 Jahr nach Auslieferung des Geräts unter normalen Betriebsbedingungen (Betriebstemperaturen beachten).

Für Geräte mit USV (unterbrechungsfreie Stromversorgung) Funktion empfehlen wir eine Wartung (Systemrevision) alle 2-3 Jahre. Beachten Sie die Hinweise zu Akkumulatoren und Batterien 15. Bei Beanstandungen legen Sie bitte zum Gerät einen Zettel mit dem stichwortartig beschriebenen Fehler. Wenn auf diesem auch der Name und die Telefonnummer des Absenders stehen, dient dies der beschleunigten Abwicklung.

Bei telefonischen Anfragen helfen Sie uns, wenn Sie die Seriennummer Ihres Gerätes sowie den Datenträger der imc Software und dieses Handbuch bereithalten. Vielen Dank! Dem Typschild können Sie die Seriennummer, Nennspannung und Nennleistung des Geräts entnehmen.

1.8 Sicherheit

Dieser Abschnitt gibt einen Überblick über alle wichtigen Sicherheitsaspekte für einen optimalen Schutz des Personals sowie für den sicheren und störungsfreien Betrieb. Bei Nichtbeachtung der in dieser Anleitung aufgeführten Handlungsanweisungen und Sicherheitshinweise können erhebliche Gefahren entstehen.

1.8.1 Verantwortung des Betreibers

Das Gerät wird im gewerblichen Bereich eingesetzt. Der Betreiber des Gerätes unterliegt daher den gesetzlichen Pflichten zur Arbeitssicherheit.

Neben den Arbeitssicherheitshinweisen in dieser Betriebsanleitung müssen die für den Einsatzbereich des Gerätes gültigen Sicherheits-, Unfallverhütungsvorschriften- und Umweltschutzvorschriften eingehalten werden.

Der Betreiber muss dafür sorgen, dass alle Mitarbeiter, die mit dem Gerät umgehen, die Betriebsanleitung gelesen und verstanden haben.

1.8.2 Bedienpersonal

Warnung

- Verletzungsgefahr bei unzureichender Qualifikation!
- Unsachgemäßer Umgang kann zu erheblichen Personen- und Sachschäden führen. Im Zweifel Fachpersonal hinzuziehen
- Arbeiten, die ausdrücklich von imc Fachpersonal durchgeführt werden müssen, dürfen vom Anwender nicht ausgeführt werden. Ausnahmen gelten nur nach Rücksprache mit dem Hersteller und entsprechenden Schulungen.

In der Betriebsanleitung werden folgende Qualifikationen für verschiedene Tätigkeitsbereiche benannt:

- Anwender der Messtechnik. Grundlagen der Messtechnik. Empfohlen sind Grundlagenkenntnisse der Elektrotechnik. Umgang mit Rechnern und dem Betriebssystem Microsoft Windows. Anwender dürfen das Gerät nicht öffnen oder baulich verändern.
- Fachpersonal ist aufgrund seiner fachlichen Ausbildung, Kenntnisse und Erfahrung sowie Kenntnis der einschlägigen Bestimmungen in der Lage, die ihm übertragenen Arbeiten auszuführen und mögliche Gefahren selbstständig zu erkennen.

1.8.3 Besondere Gefahren

Im folgenden Abschnitt werden die Restrisiken benannt, die sich aufgrund der Gefährdungsanalyse ergeben. Um Gesundheitsgefahren zu reduzieren und gefährliche Situationen zu vermeiden, beachten Sie die aufgeführten Sicherheitshinweise und die Warnhinweise in dieser Anleitung.

GEFAHR!

- Lebensgefahr durch elektrischen Strom!
- Bei Berührung mit spannungsführenden Teilen besteht unmittelbare Lebensgefahr. Beschädigung der Isolation oder einzelner Bauteile kann lebensgefährlich sein.

Deshalb:

- Bei Beschädigungen der Isolation Spannungsversorgung sofort abschalten und Reparatur veranlassen.
- Arbeiten an der elektrischen Anlage nur von Elektrofachkräften ausführen lassen.
- Bei allen Arbeiten an der elektrischen Anlage diese spannungslos schalten und Spannungsfreiheit prüfen.

GEFAHR!

- Verletzung an heißen Oberflächen!
- Die Geräte von imc sind so konstruiert, dass die Oberflächentemperaturen bei normalen Bedingungen die in EN 61010-1 festgelegten Grenzwerte nicht überschreitet.

Deshalb:

• Oberflächen, deren Temperaturen funktionsbedingt die Grenzwerte überschreiten, sind mit den links abgebildeten Symbol gekennzeichnet.

1.9 Nach dem Auspacken

Die Lieferung ist bei Erhalt unverzüglich auf Vollständigkeit und Transportschäden zu prüfen. Bei äußerlich erkennbarem Transportschaden, wie folgt vorgehen:

- Lieferung nicht oder nur unter Vorbehalt entgegennehmen,
- Schadensumfang auf Transportunterlagen / Lieferschein des Transporteurs vermerken,
- Reklamation einleiten.

Nach dem Auspacken sollte das Gerät auf mechanische Beschädigungen und lose Teile im Inneren überprüft werden. Falls ein Transportschaden vorliegt, ist sofort der imc-Kundendienst zu informieren. Das Gerät darf dann nicht in Betrieb gesetzt werden.

Überprüfen Sie das mitgelieferte Zubehör auf Vollständigkeit:

- AC/DC-Netzadapter mit Netzkabel und Stecker
- Stecker für DC Versorgung
- Handbuch: Erste Schritte in gedruckter Form

Hinweis

Jeden Mangel reklamieren, sobald er erkannt ist. Schadenersatzansprüche können nur innerhalb der geltenden Reklamationsfristen geltend gemacht werden.

1.10 Transport

Transportieren Sie das Gerät nur in der *Originalverpackung* oder in einer geeigneten Verpackung, die Schutz gegen Schlag und Stoß gewährt. Bei Beschädigungen informieren Sie bitte umgehend den Kundendienst. Transportschäden sind vom Garantieanspruch ausgeschlossen. Schäden durch Betauung können dadurch eingeschränkt werden, indem das Gerät in Plastikfolie eingepackt wird. Das dargestellte Handling Label für Lithium-Ionen Batterien können Sie auch selbstständig ausgedruckt auf dem Packstück anbringen. Beachten Sie, dass die Form und das Format durch IATA exakt vorgegeben ist: der Ausdruck muss in Farbe erfolgen im Format: 120 x 110 mm.

1.11 Lagerung

Generell kann das Messgerät in einem Temperaturbereich von -20°C bis +85°C gelagert werden.

1.12 Reinigung

- Ziehen Sie vor der Reinigung des Gerätes den Versorgungsstecker. Der Gehäuse-Innenraum darf nur von einem Servicetechniker geöffnet und gereinigt werden.
- Verwenden Sie zur Reinigung keine Scheuermittel und keine kunststofflösenden Mittel. Zur Reinigung der Gehäuseoberfläche ist ein trockenes, fusselfreies Tuch ausreichend. Bei starken Verschmutzungen kann ein feuchtes Tuch mit mildem Spülmittel verwendet werden. Zur Säuberung in den Vertiefungen des Gehäuses verwenden Sie bitte einen weichen und trockenen Pinsel.
- Lassen Sie keine Flüssigkeit in das Innere des Gerätes dringen.
- Achten Sie darauf, dass die Lüftungsschlitze am Gehäuse frei bleiben.

2 Inbetriebnahme des Gerätes

2.1 Bei Gebrauch

Bestimmte Grundregeln sind auch bei zuverlässigen Sicherheitseinrichtungen zu beachten. Nicht vorgesehene und somit sachwidrige Verwendungen können für den Anwender oder Unbeteiligte gefährlich sein und eine Zerstörung des Messobjektes oder des Mess-Systems zur Folge haben. Besonders gewarnt wird vor Manipulationen am Mess-System. Diese sind besonders gefährlich, weil andere Personen von diesem Eingriff nichts wissen und somit der Genauigkeit und der Sicherheit des Mess-Systems vertrauen.

Hinweis

Wenn anzunehmen ist, dass ein gefahrloser Betrieb nicht mehr möglich ist, so ist das Gerät außer Betrieb zu setzen und gegen unabsichtlichen Betrieb zu schützen. Diese Annahme ist berechtigt,

- I. wenn das Gerät sichtbare Beschädigungen aufweist
- II. wenn das Gerät lose Teile enthält
- III. wenn das Gerät nicht mehr arbeitet
- IV. nach längerer Lagerung unter ungünstigen Verhältnissen (z.B. im Freien oder in feuchten Räumen).
 - 1. Beachten Sie die Angaben im Kapitel "Technische Daten" und die Applikationshinweise zu den Anwendungen von imc BUSDAQ, um Schäden am Gerät durch unsachgemäßen Signalanschluss zu vermeiden.
 - 2. Falls Sie einen Wechseldatenspeicher benutzen, beachten Sie die Hinweise im imc Software Handbuch. Insbesondere ist die Einschränkung der max. Umgebungstemperatur des eingesetzten Datenspeichers zu beachten.
 - 3. Wenden Sie keine Gewalt beim Wechseln des Datenträgers an.

2.2 Versorgung

Der zulässige Versorgungsspannungsbereich beträgt 10...50 V (DC). Das für den Standardfall mitgelieferte Tischnetzteil liefert 15 V_{DC} bei max. 60 W Leistungsaufnahme. Eingangsseitig beträgt die Wechselspannung 110 .. 240V 50/60Hz.

Hinweis

Beachten Sie, dass die Betriebstemperatur des Tischnetzteils für 0°C bis 40°C ausgelegt ist. Dies gilt auch dann, wenn Ihr Messgerät im erweiterten Temperaturbereich ausgeführt sein sollte!

Grundsätzlich ist auch der Anschluss an eine DC-Versorgungsquelle, wie z.B. einer Fahrzeugbatterie möglich. Beim Anschluss ist zu beachten:

- Eine *Erdung* des Geräts ist sicherzustellen. Hat die Versorgungs-Spannungsquelle Erdbezug (Erde mit (–)Pol verbunden), so erfolgt die Erdung automatisch über den (–)Pol. Das mitgelieferte Tischnetzteil ist in dieser Weise vorbereitet.
- Die **Zuleitung** muss niederohmig über ein Kabel mit ausreichendem Querschnitt erfolgen. Eventuell im Versorgungskreis zwischen geschaltete (Entstör-) Filter sollten keine Reihen-Induktivitäten größer als 1 mH enthalten. Andernfalls ist ein zusätzlicher Parallel-Kondensator nötig.

Pinbelegung Versorgungsstecker:

Typ: Binder				
Pin 1	+ Supply			
Pin 2	- Supply, Erde			
Pin 3	n. c.			

Typ: ESTO Kabeldose RD03 Serie 712 3-polig

2.2.1 DC-Versorgung am CAN-Knoten 1 oder 2

Auf Wunsch kann die DC-Versorgung an den CAN-Knoten 1 und 2 herausgeführt werden (DSUB Pin 1 und 5) 46. Diese Verbindung ist über eine Strombegrenzung geschützt und ermöglicht entweder die Versorgung des BUSDAQs über den CAN-Bus oder die Versorgung angeschlossener CANSAS über das Netzteil des BUSDAQs.

2.2.2 DC-Versorgung zur Speisung angeschlossener CANSAS

Die zuvor beschriebene Möglichkeit zur externen Speisung des BUSDAQs ermöglicht umgekehrt eine Speisung angeschlossener CANSAS Module über das Netzteil des BUSDAQs. Voraussetzung ist auch hier ein Kabel mit ausreichendem Querschnitt. Der Laststrom beträgt maximal 1 A pro Knoten und wird durch eine Strombegrenzung sichergestellt.

2.2.3 Hinweise zum Betrieb mit herausgeführter Versorgung

- Bei diesem Aufbau darf der maximale Strom von 1 A pro Knoten nicht überschritten werden. Der geringe Verbrauch der CANSAS Module sollte nicht unterschätzt werden, da bei einer geringen Versorgungsspannung die Leistung über die Stromstärke erreicht wird. Schon zwei UNI8 mit einer Leistung von ca. 30 W (mit angeschlossenen Sensoren) überschreiten die Grenze mit einer Stromstärke von 2 A bei 15 V. Hinzu kommt der Spannungsabfall bei langen Leitungen und kleinen Querschnitten. Es ist in jedem Fall erforderlich zunächst die Leistungsaufnahme und die zu erwarteten Ströme zu berechnen.
- Der CAN-Bus ist aufgrund seiner Technik ideal dazu geeignet, ein System nachträglich zu verändern.
 Dabei kann es leicht passieren, dass zunächst die Stromlast und der Querschnitt korrekt ausgelegt wurde, im weiteren Verlauf jedoch Module ergänzt werden, welche in Summe die Spezifikation nicht mehr einhalten.
- Es darf immer nur eine Versorgung verwendet werden. Falls am CAN-Bus eine externe Versorgung eingespeist wird und außerdem das Netzteil des BUSDAQs angeschlossen ist, kann es zur Zerstörung des BUSDAQs kommen. Auf keinen Fall darf das Netzteil des BUSDAQ als USV für das angeschlossene CAN-Bus System eingesetzt werden.
- Bei eventuellem Ansprechen der Strombegrenzung sorgt die USV-Funktionalität ("Auto-Sicherung bei Stromausfall") dafür dass eine Messung automatisch gestoppt und sicher abgeschlossen wird um Datenverlust zu vermeiden. Dennoch kann es bei fehlerhafter Beschaltung zu Datenverlust oder zur Beschädigung des BUSDAQs kommen. Im Zweifel wenden Sie sich an unseren Kundendienst.
- Die Verwendung von -SUPPLY ersetzt nicht den CAN_GND Anschluss! CAN_GND sollte immer und unabhängig von der herausgeführten Versorgung verwendet werden, damit die Pegel von CAN_H und CAN_L sicher erkannt werden.

2.2.4 USV und Power Fail Funktion

Automatisches Beenden einer Messung und Datensicherung bei Spannungsausfall

imc BUSDAQ verfügt über USV-Funktionalität zur Gewährleistung der Datenintegrität bei Spannungsausfall. Dieser verhindert bei einem Spannungsausfall einen Datenverlust und wird als **Power Fail** bezeichnet. Bei einem Spannungsausfall wird die Messung automatisch beendet und die Daten rechtzeitig auf der internen μ-Disk gesichert.

Die **Puffer-Zeitkonstante** gibt die Messungsdauer an, die von imc BUSDAQ nach Ausfall der Spannung überbrückt wird. Damit wird verhindert, dass kurze Spannungsausfälle eine Messung beenden.

Die Puffer-Zeitkonstante beträgt bei allen Varianten imc BUSLOG und imc BUSDAQ-2 zehn, bei imc BUSDAQ-X fünfzehn Sekunden. Nach Ablauf der Puffer-Zeitkonstanten wird die laufende Messung abgeschlossen. Dies kann weiterhin bis zu 10 Sekunden in Anspruch nehmen.

Hinweis

- Es ist darauf zu achten, dass das Gerät stets über den Schalter ausgeschaltet wird. Wenn einfach nur das Versorgungskabel gezogen wird, schaltet die Power Fail Funktion zu, die dann unnötigerweise den Akku belastet.
- Die Angaben gelten für einen vollgeladenen Akku bei Raumtemperatur. Bei Temperaturen unter 20°C sind diese Zeiten nicht mehr gewährleistet.
- Wenn die resultierende Abtastzeit eines Kanals > 5 Sekunden ist, dauert das Abschließen der Messung länger als die garantierte Puffer-Zeitkonstante.
- Die Puffer-Zeitkonstante kann mit der Gerätesoftware geändert werden. Siehe im Gerätesoftware Handbuch: *Geräteeigenschaften*: Eintrag *USV*.
- Ist das Gerät immer nur kurzzeitig für die Dauer der Messung versorgt, kann die Power Fail Funktion nicht garantiert werden! Insbesondere bei imc BUSLOG und imc BUSDAQ reicht dann die Ladezeit der Kondensatoren nicht aus, um die Pufferdauer und den Messabschluss zu überbrücken.

2.2.5 Hauptschalter

Einschalten

Der *Hauptschalter* des Geräts ist ein Power-On Taster mit integrierter "POWER"-LED, dessen Betätigung für ca. 1 Sekunde das Gerät einschaltet, was durch Aufleuchten der grünen "POWER"-LED erkennbar ist. Ein erfolgreicher "Boot"-Vorgang des Geräts lässt sich dabei am dreimaligen kurzen Piepen kontrollieren.

Ausschalten

Das Abschalten erfolgt durch erneutes Betätigen des Power-On Tasters für ca. 1 Sekunde, was durch ein gleichmäßiges Blinken der "POWER"-LED signalisiert wird. Dabei schaltet das Gerät bei einer laufenden Messung nicht unmittelbar ab. Zunächst werden zugehörige Dateien auf der internen Festplatte abgeschlossen bevor sich das Gerät selbsttätig abschaltet. Dieser Vorgang

dauert maximal etwa 10 Sekunden. Ein dauerhaftes Drücken des Power-On Tasters ist währenddessen nicht erforderlich!

Falls keine Messung läuft dauert der Abschaltvorgang ca. 1 Sekunde.

2.2.6 Remote On/Off

Der imc BUSDAQ kann über die Control Buchse ein- bzw. ausgeschaltet werden. Stellt man eine Verbindung vom Pin *Remote On/Off* zu –*Supply* über einen Taster her, wird das Gerät, wie mit dem grünen Gerätetaster ein und ausgeschaltet. D.h. eine einmalige kurze Betätigung des Tasters schaltet das Gerät nach einer kurzen Verzögerung aus bzw. ein.

Wird die Verbindung mit einem **Schalter überbrückt, bleibt das Gerät dauerhaft an**. Der grüne Gerätetaster ist in diesem Falle ohne Wirkung! Zum Ausschalten muss der Schalter wieder geöffnet sein und anschließend nochmals kurz geschlossen werden.

Bei **imc BUSDAQ-X** ist der Remote-Betrieb generell nicht mit einem Taster sondern nur mit einem Schalter an der Control Buchse möglich. Hier bleibt das Gerät mit geschlossenem Schalter dauerhaft an und schaltet sich aus, sobald der Schalter geöffnet wird.

Hier finden Sie die Pinbelegung der CTRL-Buchse 50.

2.3 Erdung, Schirmung

Zur Einhaltung der Grenzwerte für Geräte der Klasse B gemäß Teil 15 der FCC-Bestimmungen ist das Gerät zu erden.

2.3.1 Erdung

Zur Einhaltung der Grenzwerte für Geräte der Klasse B gemäß Teil 15 der FCC-Bestimmungen, ist das Gerät zu erden. Gleiches gilt als Voraussetzung für die spezifizierten technischen Daten.

Bei Benutzung des mitgelieferten Tischnetzteils ist dies durch den Schutzleiter-Anschluss des Netzsteckers gewährleistet: Am LEMO-Stecker des mitgelieferten Tischnetzteils sind sowohl der Minuspol der Versorgungsspannung als auch Schirm und Steckergehäuse mit Schutzerde des Netzkabels verbunden.

Der DC-Versorgungseingang *am Gerät selbst (LEMO-Buchse) ist nicht potentialfrei* ausgeführt, d.h. nicht isoliert zum elektrischen Systembezug ("GND") bzw. zum Gehäuse ("CHASSIS")!

Bei Betrieb aus einer isolierten DC-Versorgungsquelle (z.B. Batterie) ist die Erdung durch Verbindung zum Gehäuse herzustellen.

2.3.2 Schirmung

Grundsätzlich ist zur Einhaltung der Grenzwerte bezüglich EMV und Funkentstörung die Verwendung von geschirmtem und geerdetem Kabel nötig.

In vielen Fällen ist die Benutzung eines kostengünstigen, mehradrigen und einfach geschirmten Kabels (auch für mehrere Kanäle) ausreichend.

- Schützen Sie CAN-H-L gegen Gleichtaktspannungen mit geschirmten Kabeln.
- Verbinden Sie das Gehäuse mit Erde.
- Schließen Sie CAN-Ground an.
- Benutzen Sie geschirmte Kabel, verbinden Sie den Schirm mit CHASSIS.
- Schließen Sie den Schirm immer nur an einem Ende an, um Ausgleichsströme zu vermeiden.

2.3.3 Potentialunterschied bei synchronisierten Geräten

Beim Einsatz von mehreren Geräten, die zur Synchronisierung über die **Sync Buchse** verbunden sind, ist sicherzustellen, dass alle Geräte auf gleichem **CHASSIS-Potential** liegen. Da über den Bezug der Synchronisationsleitung die Geräte verbunden werden, müssen gegebenenfalls Potentialunterschiede zwischen den Geräten über eine zusätzliche Leitung mit ausreichendem Querschnitt ausgeglichen werden. **Alternativ** besteht die Möglichkeit die Verbindung über das Modul **ISOSYNC** galvanisch zu trennen, siehe auch unter Synchronisation im Software Handbuch, oder nutzen Sie den Fibre-Optic Converter ACC/SYNC-FIBRE.

2.4 Sicherungen (Verpolschutz)

Der Versorgungseingang des Geräts ist mit einem wartungsfreien Verpolschutz versehen. Eine Sicherung oder Überstrombegrenzung ist mit DC-Versorgung nicht vorgesehen. Insbesondere beim Einschalten sind hohe Stromspitzen zu erwarten. Bei Einsatz des Geräts an einer DC-Spannungsversorgung mit selbst konfektioniertem Zuleitungskabel ist dies durch Verwendung ausreichender Leitungsquerschnitte zu berücksichtigen.

2.5 Akkumulatoren, Batterien und Sicherungen

Eine Li-Batterie (3.0V) befindet sich (eingelötet) auf dem Basisboard.

Für eine unterbrechungsfreie Stromversorgung (USV) werden bei *imc BUSLOG* und *imc BUSDAQ-2* Kondensatoren genutzt. *imc BUSDAQ-X* ist mit zwei Blei-Akku 4 V mit 0,5 Ah ausgestattet. Es ist keine besondere Wartung erforderlich. Es befinden sich keine Sicherungen im Gerät.

Für *imc BUSDAQ-X* (MP0,5-4 4V Bleiakku) gibt der Hersteller 5-7 Jahre bei T<20°C und weniger als 1 Jahr bei 50°C an, wenn die Entladung sehr gering ist (Trickle-life). Die Ladung dieser internen Stützbatterie erfolgt automatisch bei anliegender Versorgung und eingeschaltetem Gerät. Wegen der unvermeidlichen Selbstentladung wird empfohlen, das Gerät nach spätestens 3 Monaten Betriebspause wieder an eine Versorgung anzuschließen und ca. 6 bis 9 h eingeschaltet lassen.

Wird die USV oft benötigt (viele Lade und Entladezyklen), hängt die Lebensdauer von der Höhe der Entladung ab (puffert die USV nur kurz oder wird der Akku jedesmal entladen). Der Hersteller gibt 200 Zyklen bei 100% Entladung und 1200 Zyklen bei 30% Entladung und 25°C an.

Im *BUSLOG* und *BUSDAQ-2* sind Kondensatoren als Akkus eingesetzt (EPCOS UltraCap). Der Hersteller gibt hier über 10 Jahre bei T<45°C und 2 Jahre bei 65°C an. Die Anzahl der Lade-/Entladezyklen wird mit 500.000 bei 25°C und 0,5 A Entladestrom (im BUSLOG bis zu 0,6 A!) angegeben.

imc empfiehlt Wartungsintervalle von 2 bis 3 Jahren.

2.6 LEDs und Beeper

Als zusätzliche optische und akustische Ausgabekanäle sind 6 Status-LEDs und ein Summer (Beeper) bei den BUSDAQ-X Geräten vorgesehen. Sie können als Standard-Ausgabe-Kanäle in imc Online FAMOS verwendet werden, indem ihnen dort die binären Werte 0 / 1 oder Funktionen mit einer booleschen Ausgabe zugewiesen wird. Ein interaktives Setzen bzw. eine Anzeige ist für diese Ausgabekanäle nicht sinnvoll und daher nicht vorgesehen.

Der Summer kann per Software nicht abgeschaltet werden, er dient auch als Indikator für eine einsetzende Pufferung der Geräte-Versorgungsspannung durch die USV.

LEDs und Beeper gibt es nur bei imc BUSDAQ-X Geräten!

3 Einführung

3.1 imc BUSDAQ / BUSLOG Familie

Die imc BUSDAQ / BUSLOG Familie dient der zeitsynchronen Erfassung von CAN-Botschaften, speziell von Messdaten und Statusinformationen. Je nach Typ können neben dem CAN-Bus auch LIN und ARINC Busse angeschlossen werden. Dabei werden bis zu 8 Knoten und auch unterschiedliche Protokolle wie CCP und KWP2000 unterstützt.

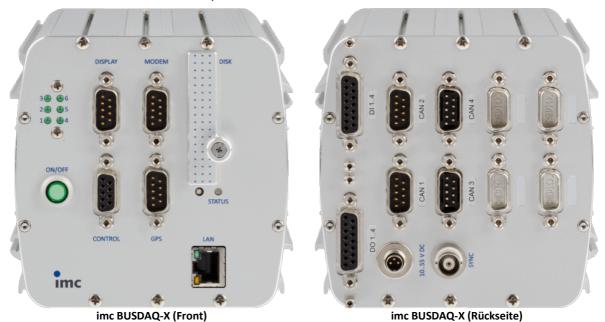
An einem imc BUSDAQ lassen sich z.B. beliebige CAN-Bus-Teilnehmer wie Sensoren, Messverstärker oder auch Steuergeräte anschließen. Die über CAN-Bus gesendeten Messdaten können getriggert, dargestellt und gegebenenfalls verrechnet werden.

Die Protokollparameter werden über die Bediensoftware imc DEVICES konfiguriert und können in ihren physikalischen Einheiten gespeichert werden.

imc BUSLOG

Als preiswertes Modul mit fest konfigurierten Grundfunktionen ist es für Standardaufgaben mit klaren Anforderungen zum Datenaufzeichnen gedacht. Die geringe Leistungsaufnahme, der signalgesteuerte Sleep Mode und die schnelle erneute Messbereitschaft nach "wake up on CAN" in nur 200 ms prädestiniert BUSLOG besonders für den Einsatz in der Fahrzeugerprobung und im Flottenversuch.

imc BUSDAQ-2


Das imc BUSDAQ-2-Modul für 2 Knoten mit erweiterten Funktionen, wie Modem, Display sowie direkt anschließbarem GPS, ist das Standard-Modul für Messnetzwerke mit dezentralen CAN-Teilnehmern wie z.B. Sensoren, Steuergeräten oder CANSAS Messmodulen.

imc BUSDAQ-X

Das imc BUSDAQ-X ist das universelle Systemmodul, das mit zusätzlichen Multibus-Interfaces auf bis zu 8 Knoten erweiterbar ist.

Mit den erweiterten Funktionen, wie Modem, Display, digitale Ein- und Ausgänge sowie direkt anschließbarem GPS sind auch komplexe Messnetzwerke oder Fahrversuchseinsätze kein Problem.

3.2 Bediensoftware

- imc BUSDAQflex, imc BUSDAQ, imc SPARTAN, imc C-SERIE und Geräte der imc CRONOS-Serie werden mit der Bediensoftware imc STUDIO betrieben. Diese Bediensoftware ermöglicht eine vollständige manuelle und automatische Einstellung der Messparameter, Echtzeitfunktionen, Triggermaschinen und Speichermodi. Die Messkurvendarstellung im Kurvenfenster und die Dokumentation im Reportgenerator sind integraler Bestandteil der Bediensoftware. Es stehen umfangreiche Triggermöglichkeiten, und problemangepasste Speicheroptionen zur Verfügung. Zusammen mit der Zusatzsoftware imc Online FAMOS können Sie aus den Messdaten die gewünschten Resultatsgrößen in Echtzeit errechnen und anzeigen.
- imc CANSAS Module können aus der Bediensoftware heraus direkt konfiguriert werden, wenn sich die imc CANSAS Software auf dem gleichen Rechner befindet. Ein separater Anschluss der imc CANSAS Module am PC, z.B. über einen USB-CAN Adapter ist nicht erforderlich.
- Für Spezialaufgaben z.B. der Systemintegration in Prüfstände gibt es komfortable Schnittstellen zu allen gängigen Programmiersprachen wie z.B. Visual Basic™, Delphi™ oder LabVIEW.

3.3 Abtastrate

Die Abtastraten von Feldbuskanälen unterliegen keiner besonderen Regel, sie können beliebig verschieden sein. Die **Summenabtastrate** des Systems ergibt sich aus der Summe der Abtastraten aller aktiven Kanäle.

3.4 Geräteübersicht

Einige, der in diesem Handbuch beschriebenen Möglichkeiten, gelten nur für bestimmte Gerätevarianten. Die entsprechenden Gerätegruppen werden an den jeweiligen Stellen im Handbuch genannt. Sie finden die Gruppen in der folgenden Tabelle.

_	nicht verfügbar	•	standardmäßig	0	optional
CRFX	imc CRONOSflex	CRC	imc CRONOScompact	CRPL	imc CRONOS-PL

	TCP/IP	Unterstützte Datenträger		R	AM	41	Kurz-	
Gerät	Interface [MBit/s]	CF	PCMCIA	Fest- platte	Daten [MB]	Interface [MB]	Abtastrate ¹ [kHz]	beschreibung
				Grup	pe 2: S	N12XXX	X	
imc CRPL -2, -3, -4, -8, -13, -16 imc CRSL-2, -4	100	_	•	О	14	16 (32 ab 2007)	400	Modulares System zu erkennen am Herstellerdatum (ab Sommer 2003)
				Grup	pe 3: S	N12XXX	X	
imc C1 imc C-SERIE	100	_	•	_	14	32	400	
	Gruppe 4: SN13XXXX							
imc BUSDAQ imc BUSDAQ <i>flex</i>	100	•	_	o	16	32	400	Feldbus Datenlogger
imc SPARTAN	100	•	-	0	16	32	400	Modulares System
	Gruppe 5: SN14XXXX							
imc SPARTAN-R	100	•	_	0	16	32	400	Modulares System
imc CRC-400 imc CRFX-400	100	•	_	0	16	32	400	Modulares System
imc miniPOLARES	100	•		_	16	32	400	
imc C1-1-LEMO-FD imc C-SERIE-FD	100	•	_	_	16	32	400	

	TCP/IP	Unterstützte Datenträger			RAM		1	Kurz-
Gerät	Interface [MBit/s]	USB	Express Card	Fest- platte	Daten [MB]	Interface [MB]	Abtastrate ¹ [kHz]	beschreibung
Gruppe 6: SN16XXXX								
imc CRC-2000E imc CRFX-2000	100	•	•	0	16	512	2000 via EtherCAT sonst 400	Modulares System

¹ maximale Summenabtastrate (siehe Geräte-Datenblatt)

Gruppen	Speichermedien
Gruppe 4-6	Für Speichermedien sind die Geräte dieser Gruppe mit einem CF-Card Slot bzw.
	ExpressCard Slot ausgerüstet. Optional können die imc CRONOS-Geräte dieser
	Gerätegruppe mit einer internen fest verbauten Festplatte ausgerüstet werden.

3.5 Geräte Optionen

3.5.1 Vektor Datenbank-Anbindung

In vielen Fällen liegen Einstellparameter bereits als Vektor Datenbank vor, die von allen imc BUSDAQ Modulen eingelesen werden kann. So ist es möglich eine Vielzahl an Parametereinstellungen schnell und komfortabel vorzunehmen.

Als Datenspeichermedien kommen Compact Flash Speicher oder IDE-Festplatten, je nach Bedarf mit unterschiedlichen Datenspeichergrößen, zum Einsatz. Das serienmäßige Ethernet TCP/IP-Interface erlaubt die einfache Anbindung an PC oder die Integration in dezentrale Messnetzwerke.

3.5.2 imc Online FAMOS

imc Online FAMOS ist ein Programmpaket zur online Datenverarbeitung auf dem integrierten Signalprozessor. Mit imc Online FAMOS können Sie die Messdaten beliebig verknüpfen und Rechenkanäle erzeugen, die das verlangte Endergebnis in Echtzeit berechnen. Insbesondere ermöglicht Ihnen imc Online FAMOS eine Überwachung der Messung, indem Grenzwertverletzungen auf dem Bildschirm oder durch Schließen eines Relaiskontaktes gemeldet werden. Die Eingabe der Befehlsfolge geschieht auf direkte Weise, ähnlich wie mit dem Taschenrechner. Die installierte Rechenleistung ist ausreichend um bei der vorliegenden Summenabtastrate in Echtzeit zu reagieren. Damit lassen sich z.B. Zwei- und Dreipunktregler realisieren. Nicht zuletzt kann die Online Berechnung zur Datenreduktion eingesetzt werden, indem komplexe Triggerbedingungen berechnet und nur bei Bedarf Messdaten aufzeichnen lassen.

imc Online FAMOS ist nicht für imc BUSLOG verfügbar.

Genauere Informationen zu imc Online FAMOS erhalten Sie im Gerätesoftware Handbuch.

3.5.3 Betrieb ohne PC

Zum Betrieb von imc BUSDAQ-2 und -Xbenötigen Sie nicht unbedingt einen PC. Wenn ein Selbststart ins Gerät geschrieben wurde, beginnt dieses selbstständig die Messung. Das Display kann zur Anzeige der laufenden Messwerte genutzt werden. Es dient als komfortable Statusanzeige und kann die imc Bediensoftware zur Steuerung ersetzen bzw. ergänzen. Es arbeitet auch dort noch, wo üblicherweise der Einsatz eines PCs nicht mehr möglich ist, z.B. bei -20°C oder +60°C.

Das Display kann jederzeit angeschlossen und wieder abgezogen werden, ohne die laufende Messung zu behindern. Damit kann der Status gleichzeitig laufender Messgeräte nacheinander geprüft werden. Die ausführliche Beschreibung entnehmen Sie bitte dem Kapitel *Display* im Handbuch der imc Bediensoftware.

Bei imc BUSLOG ist kein Anschluss für das Display vorhanden!

3.5.3.1 Display

Mit dem Display ist es Ihnen möglich, interaktiv in den Messprozess einzugreifen, indem Sie sich aktuelle Werte und Zustände anzeigen lassen, sowie Parameter mit der Tastatur ändern.

Wird das Messgerät so vorbereitet, dass es beim Einschalten eine bestimmte Konfiguration lädt, ist es möglich ohne PC die Messung durchzuführen. Das Display dient als komfortable Statusanzeige.

Technischen Daten 42

Eigenschaften:

- 320 x 240 Pixel in 65536 Farben
- Gehäusegröße ca. 306 x 170 x 25 mm; Größe des Anzeigefeldes: ca. 11,5 x 8,6 cm
- Bohrung zur Displaybefestigung: Durchmesser Kernloch 5,11 mm;
 Durchmesser außen 6,35 mm (1/4" 20 UNC)
- Gewicht: ca. 1 kg

Hinweise

- Das Display wird über eine serielle RS232 Verbindung angesteuert. Die Aktualisierungsrate kann nicht verändert werden. Sie hängt von der Auslastung des Gerätes ab und beträgt im besten Fall 15 Hz
- Das Display muss über den 3-poligen Binder Anschluss versorgt werden.

3.5.4 Interner Datenträger

Der optionale imc BUSDAQ Compact Flash Datenspeicher befindet im Gerät und ist nach Abschrauben der Disk-Abdeckung (Räderschraube oder Schiebeklappe) zugänglich.

3.5.5 SYNC

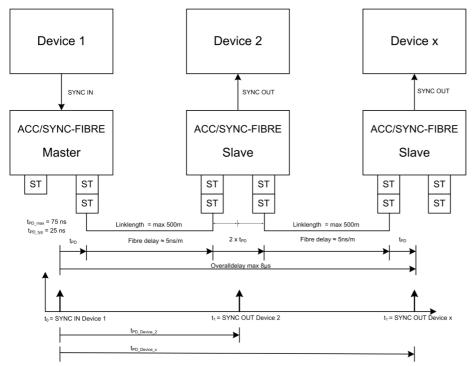
Zur synchronisierten Messung steht eine SYNC Buchse zur Verfügung. Diese ist zur Synchronisation mit anderen imc Geräten oder einem DCF77 Signalgeber zu verbinden.

Hinweis

- Falls die synchronisierten Geräte auf unterschiedlichen Potentialen liegen, sollte diese über eine zusätzliche Leitung mit ausreichendem Querschnitt ausgeglichen werden. Alternativ besteht die Möglichkeit die Verbindung über das Modul ISOSYNC galvanisch zu trennen oder einen Fibre-Optic Converter (Glasfaser-Isolation) zu verwenden: ACC/SYNC-FIBRE.
- Ist der SYNC-Anschluss mit einem gelben Ring unterlegt, ist dieser bereits isoliert und gegen Potentialunterschiede geschützt.
- Eine genaue Beschreibung der Funktionsweise finden Sie im Kapitel Synchronisation im imc Software Handbuch.
- Im Sleep Betrieb ist kein synchroner Betrieb mit anderen Geräten möglich, da die kurze Aufstartzeit nicht ausreicht, um das Gerät aufzusynchronisieren.

3.5.5.1 Optischer SYNC Adapter: ACC/SYNC-FIBRE

Eine grundlegende Eigenschaft sämtlicher imc Messgeräte etwa der Gerätefamilien imc CRONOSflex, imc CRONOScompact, imc CRONOS-SL, imc CRONOS-PL, imc SPARTAN, imc BUSDAQ, imc BUSDAQflex und imc C-SERIE besteht in der Möglichkeit, mehrere, auch unterschiedliche Geräte untereinander zu synchronisieren und im Verbund zu betreiben. Die Synchronisation erfolgt typischerweise im Master/Slave Verfahren über das elektrische SYNC-Signal, welches auf einer BNC-Buchse der Geräte zugänglich ist.


In elektrisch stark gestörter Umgebung bzw. bei sehr großen Entfernungen kann es von Vorteil sein, dieses Signal über Glasfaser-Optik (LWL, Fibre Optic) vollkommen isoliert und störungsfrei zu entkoppeln. Hierzu dient der extern anschließbare optische SYNC-Adapter ACC/SYNC-FIBRE.

Bei seiner Verwendung kommt dann nicht mehr die BNC Buchse zum Einsatz, sondern es wird eine der DSUB-9 Buchsen für GPS, DISPLAY oder MODEM verwendet, welche dann sowohl das zu entkoppelnde elektrische SYNC Signal führt als auch eine für den Adapter benötigte Versorgungsspannung und auch als Richtungssignal (Master Slave) genutzt wird.

Zu verwendende imc Messgeräte müssen aus diesem Grunde bzgl. einer der DSUB-9 Buchsen umgebaut werden. Bei einem Umbau der MODEM oder der GPS Buchse ist diese nicht mehr für den ursprünglichen Zweck verwendbar. Für die GPS Buchse gilt diese Einschränkung nicht. Es ist sogar ein paralleler Betrieb möglich (Y-Kabel), wenn die GPS-Daten nur für die Orts-Daten und der Adapter für das SYNC Signal verwendet werden.

Je nach aktuell angeschlossenem Signal (Adapter oder BNC) sind jedoch stets sowohl elektrischer als auch optischer Modus verwendbar, jedoch nicht beide zur gleichen Zeit.

Der Stecker ist für den erweiterten Temperaturbereich geeignet. Die imc Messgeräte, bei denen der Stecker zum Einsatz kommt, müssen umgebaut werden.

3.5.6 GPS

Über die neunpolige GPS Buchse können GPS-Empfänger vom **Typ Garmin GPS18LVC**, **GPS18-5Hz etc.** angeschlossen werden. Das ermöglicht eine absolute **Zeitsynchronisierung auf die GPS Zeit**. Hat die GPS-Maus Empfang, synchronisiert sich das Messsystem automatisch. Auch die **Synchronisation mit einer NMEA Quelle** ist möglich. Voraussetzung ist, dass die Uhr neben dem Sekundentakt den GPRMC-String liefert.

Alle GPS Informationen können Sie auswerten und über imc Online FAMOS weiterverarbeiten.

GPS Signale **stehen zur Verfügung** als: Prozessvektor-Variablen und Feldbus Kanäle (ab Version imc DEVICES 2.8 / imc STUDIO 4.0).

GPS Informationen	Beschreibung
pv.GPS.course	Kurs in °
pv.GPS.course_variation	magnetische Deklination in °
pv.GPS.hdop	Unschärfe der Genauigkeit für horizontal Angabe
pv.GPS.height	Höhe über Meer (über Geoid) in Metern
pv.GPS.height_geoidal	Höhe Geoid minus Höhe Ellipsoid (WGS84) in Metern
pv.GPS.latitude pv.GPS.longitude	Länge und Breite in Grad. (Skaliert mit 1E-7)
pv.GPS.pdop	Unschärfe der Genauigkeit der Position (Positional Dilution Of Precision)
pv.GPS.quality	GPS quality indicator
	0 Ungültig oder nicht verfügbare Position
	1 GPS Standard Modus, fix valid
	2 GPS Differentiell, fix valid
pv.GPS.satellites	Anzahl der zur Berechnung benutzen Satelliten.
pv.GPS.speed	Geschwindigkeit in km/h
pv.GPS.time.sec	Ab imc DEVICES Version 2.6R3 SP9 wird in pv.GPS.time.sec die Anzahl der Sekunden seit 01.01.1970 00:00 Uhr UTC ausgegeben!
	Der Wert kann dadurch nicht mehr verlustfrei einem Float-Kanal zugewiesen werden. Diese Sekundenanzahl kann unter Windows und Linux in eine Absolutzeit umgerechnet
	werden. Verwenden Sie die Funktion
	MeineSekunden = CreateVChannelInt(Kanal_001, pv.GPS.time.sec)
pv.GPS.vdop	Unschärfe der Genauigkeit für vertikal Angabe.
	siehe z.B. www.iota-es.de/federspiel/gps_artikel.html

Interne Variablen, nicht zu benutzen:

- pv.GPS.counter
- pv.GPS.test
- pv.GPS.time.rel
- pv.GPS.time.usec

pv.GPS.latitude und **pv.GPS.longitude** sind **INT32 mit 1E-7** skaliert. Sie müssen **als Integerkanäle behandelt** werden, sonst **geht die Genauigkeit verloren**. Wird der virtuelle Kanal durch Addition zu einem Kanal erzeugt muss das Ergebnis mit 10⁻⁷ multipliziert werden:

latitude = Kanal 001*0+pv.GPS.latitude *1E-7

RS232 Port-Einstellungen

Damit ein GPS-Empfänger von imc Geräten verwendet werden kann, müssen folgende Bedingungen erfüllt sein:

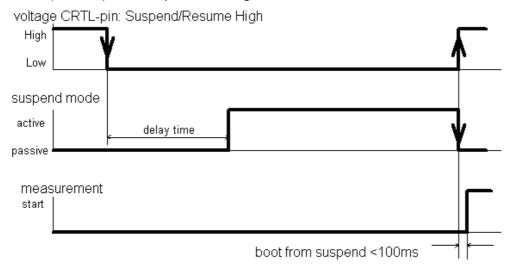
- Baudrate: Mögliche Werte sind 4800, 9600, 19200, 38400, 57600 oder 115200
- 8 Bit, 1 Stopp Bit, kein Flow control
- Folgende **NMEA-Strings** müssen gesendet werden: *GPRMC, GPGGA, GPGSA*. Die Reihenfolge der String muss eingehalten werden.
 - Weitere Strings sollten nach Möglichkeit deaktiviert werden. Falls dies nicht möglich ist, müssen alle anderen Strings vor dem GPGSA String liegen!
- Der Empfänger muss einen 1Hz-Takt liefern.
- Die steigende Flanke des Taktes muss die Sekunde markieren, die im nächsten GPRMC-String angegeben ist.
- Das Senden aller drei Strings sollte möglichst zeitnahe nach dem Sekunden-Takt erfolgen, so dass zwischen dem letzten String und dem nächsten Sekunden-Takt ausreichend Zeit für die Verarbeitung bleibt.

Anschlussbelegung der DSUB-9 Buchse 49

3.5.7 Sleep/Resume Modus

imc BUSDAQ mit CAN-Interface ist in der Lage bei extrem geringer Leistungsaufnahme innerhalb kürzester Zeit eine Messung zu starten, um CAN-Busdaten aufzuzeichnen. Damit ist er insbesondere geeignet, CAN-Daten im Fahrzeug aufzuzeichnen, sobald die Zündung erfolgt ist.

Dazu wurde eine Betriebsart entwickelt, in der das Gerät nicht ausgeschaltet wird, sondern in einen *Sleep* Modus gesetzt wird. Der Übergang aus dem *Sleep* Modus in die normale Betriebsart dauert weniger als 200ms.



Hinweis

- Sleep/Resume Modus unterstützt ausschließlich BUSDAQ Geräte mit CAN Interface. Andere Feldbusse werden nicht unterstützt!
- Falls CANSAS Module vom BUSDAQ im CAN-1 Protokoll synchronisiert werden, ist die Synchronität nach Resume nicht gewährleistet.

3.5.7.1 Beschreibung

In der Betriebsart *Sleep* nimmt imc BUSDAQ bei aufgeladenem Akkumulator weniger als 200 mW auf. Ist auf der Gerätefestplatte ein Experiment abgelegt, wird innerhalb 200 ms nach dem Verlassen des *Sleep*-Mode (Resume) dieses Experiment ausgeführt.

3.5.7.2 Vorbereitung des Messgerätes: Diskstart/Selbststart

Das Gerät wird für den Sleep Modus vorbereitet, indem <u>genau ein</u> Experiment als **Diskstartkonfiguration oder Selbststart** ins Gerät geschrieben wird. Ob diese Konfiguration auf das interne Flash oder, falls vorhanden auf die interne Festplatte gespeichert wird, spielt keine Rolle. Wichtig ist, dass es nur ein Experiment im Gerät gibt.

Wichtige Hinweise

- Befinden sich mehrere Diskstartkonfigurationen im Gerät ist kein Sleep Modus möglich, da beim Start eine Auswahl erfolgen müsste.
- Es sollten insgesamt nicht mehr als 300 Verzeichnisse auf dem internen Datenspeicher vorhanden sein! Andernfalls ist ein Start innerhalb von 200ms nicht sichergestellt.

3.5.7.3 Sleep Modus aktivieren

Damit das Gerät auf das Sleep/Resume Signal reagiert, muss eine Brücke Sleep/Resume Mode enable/Disable und –Supply verbinden. Nachdem die gewünschte Konfiguration als Diskstart gespeichert wurde, versetzt man das Gerät *durch einen Wechsel einer Spannung von High nach LOW* an Pin "Sleep/Resume High" der CTRL-Buchse in den Sleep Modus, siehe Beschaltung in <u>Pinbelegung CTRL Buchse</u> sol. Dies geschieht nicht unmittelbar sondern nach Ablauf einer werkseitig eingestellten *Nachlaufzeit*. Die Dauer der Nachlaufzeit ist mit einem Inbetriebnahmeprogramm jederzeit änderbar.

Nachlaufzeit

Die Nachlauf erfüllt folgende Funktionalität:

- Standard Einstellung ist 5 Sekunden.
- Es wird vermieden, dass eine Spannungsspitze am Pin "Sleep/Resume High" der CRTL-Buchse den Sleep Modus aktiviert.
- Der Anwender muss eindeutig und dauerhaft "Sleep/Resume High" beschalten. Wird das Gerät in einem Fahrzeug automatisch mit der Zündung geschaltet, kann innerhalb der Nachlaufzeit neu gestartet werden, ohne dass die Messung unterbrochen wird.
- Beim Beenden der Messung wird sichergestellt, dass der Ausschaltprozess noch vollständig mit aufgezeichnet wird

Systembedingt kann es in sehr seltenen Fällen dazu kommen, dass die Aktivierung abgebrochen wird. In diesem Fall leuchtet die LED zunächst dauerhaft orange, danach wird das Gerät automatisch rebootet.

3.5.7.4 Schritt für Schritt: Zusammenfassung

- 1. Gerät mit PC verbinden und gewünschte Konfiguration erstellen. Stellen Sie sicher, dass die Daten auf den internen Datenträger gespeichert werden.
- 2. Diskstart Dialog öffnen (imc DEVICES: Menü *Messung > Diskstart* | imc STUDIO: Menüband im Hauptfenster Setup: *Konfiguration > Diskstart*)
 - a) Diskstartkonfiguration ins Gerät schreiben
 - b) Speicherort egal
 - c) es darf nur eine Diskstartkonfiguration im Gerät vorhanden sein
- 3. Sleep Modus durch Beschaltung an der CRTL-Buchse aktivieren. Die LED leuchtet für die Dauer der Nachlaufzeit Orange und zeigt den Sleep Modus durch ein kurzes grünes Blinken an.
- 4. Die Messung beginnt durch Beschaltung an der CRTL-Buchse. Das grüne Blinken erlischt.
- 5. Zur Überprüfung kann man sich nun wieder mit dem Gerät verbinden. Es erscheint die Meldung "Messung läuft Verbinden; Stoppen, Abbrechen". Verbinden Sie und überprüfen Sie die laufende Messung.

3.5.7.5 Fehlerbehandlung

Fehlerbehandlung bei Selbststart bis einschließlich Firmware-Version 2.8R4:

Trat ein Fehler während des automatischen Selbststarts auf, leuchtete die LED am Wechseldatenträger am Gerät. Eine Messung kam nicht zustande.

Fehlerbehandlung bei Selbststart ab Firmware-Version 2.8R5:

- 1. Tritt ein Fehler während des automatischen Selbststarts auf, bootet das Gerät erneut und versucht erneut den Selbststart vorzubereiten.
- 2. Falls dies wieder fehlschlägt, bootet das Gerät erneut und versucht nun den Selbststart so vorzubereiten, dass keine Daten auf den internen Datenträger geschrieben werden. Für den Fall, dass die Platte voll oder nicht vorhanden ist, wird dadurch der Selbststart trotzdem vorbereitet. Insbesondere wird damit für imc BUSDAQ Geräte sichergestellt, dass der Übergang in den Sleep Modus und das Resume durch WakeOnCAN weiterhin funktioniert. Dieser Fehlerfall wird durch die LED am Wechseldatenträger und falls möglich mit einem Eintrag in der Log-Datei 28 angezeigt, z.B. 2013-09-11 13:12:46.046892 M#:Selfstart failed! Ignoring device's data storage settings at next try! E#:-4009 R#:2
- 3. Schlägt auch dieser Versuch fehl, wird abermals gebootet und das leere Standard-Experiment vorbereitet. Die Status-LED leuchtet weiter. Wenn möglich wird nun folgender Eintrag in die Log-Datei 28 geschrieben:
 - **z.B.** 2013-09-11 14:12:46.012345 M#:Selfstart failed! Using empty configuration for next try! E#:-5001 R#:3

Allgemeine Behandlung interner Fehler bis einschließlich Firmware-Version 2.8R4:

Bei fatalen internen Fehlern (unerwartete Hardwareprobleme, z.B. durch elektrische Störungen, Busfehler, etc.) war das Gerät bisher nicht mehr bedienbar. Zur Weiterverwendung musste das Gerät aus- und wieder eingeschaltet werden.

Fehlerbehandlung beim "Aufwachen" (Resume) ab Firmware-Version 2.8R5:

- 1. Bei fatalen internen Fehlern bootet das Gerät automatisch neu. Falls ein interner Datenträger vorhanden ist, wird im Root-Verzeichnis ein Eintrag in der Log-Datei DeviceXXXXXX.syslog vorgenommen (XXXXXX = Seriennummer des Gerätes).
 - z.B.: 2013-09-11 09:55:31.135739 M#:SIGSEGV occured, forcing reset!
- 2. Nach dem Reboot wird erneut versucht den Selbststart vorzubereiten.

Fehlerbehandlung bei Sleep/Resume vor Firmware-Version 2.6R3SP22, 2.7R3SP11, 2.8R1

Trat beim Übergang in den Sleep Modus ein Fehler auf, wurde dies mit der roten Status-LED angezeigt. Das Gerät verblieb dann bei normaler Leistungsaufnahme eingeschaltet.

Fehlerbehandlung beim "Einschlafen" (Sleep) ab Firmware-Version 2.6R3SP22, 2.7R3SP11, 2.8R1 bis Version 2.8R4

- 1. Tritt beim Übergang in den Sleep Modus ein Fehler auf, wird das Gerät neu gebootet. Anschließend erfolgt ein weiterer Versuch den Sleep Modus herzustellen.
- 2. Falls nötig wird dies zweimal wiederholt.
- 3. Schlägt auch der dritte Versuch fehl, wird abermals gebootet und das leere Standard-Experiment vorbereitet.

Wenn möglich wird nun folgender Eintrag in die Log-Datei 28 geschrieben:

z.B. 2013-09-11 14:12:46.012345 M#:Suspend failed! Using empty configuration for next try! E#:-5001 R#:3

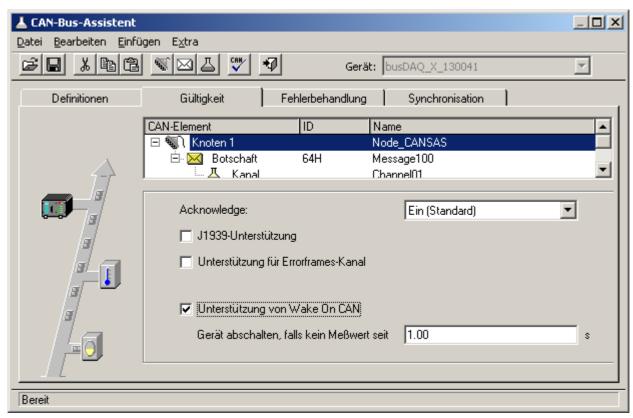
Gelingt dieser Versuch wird der Suspend Modus durch eine rot blinkende LED angezeigt (statt der üblichen grün blinkenden LED). Gelingt dies nicht, wird Schritt 3 beliebig oft wiederholt.

Fehlerbehandlung bei Sleep/Resume ab Firmware-Version 2.8R5

Schritt 1 und 2 entsprechen der Vorgängerversion

- 3. Falls dies wieder fehlschlägt, bootet das Gerät erneut und versucht nun das Selbststartexperiment so vorzubereiten, dass **keine** Daten auf den internen Datenträger geschrieben werden. Für den Fall, dass die Platte voll oder nicht vorhanden ist, wird dadurch das Sleep/Resume trotzdem vorbereitet. Damit können Geräte mit WakeOnCAN wieder aus dem Sleep gestartet werden. Dieser Fehlerfall wird während des Suspends durch die rot blinkende LED am Wechseldatenträger angezeigt. Falls möglich wird dies auch als Eintrag in der Log-Datei 28 vermerkt.
 - **z.B.** 2013-09-11 13:12:46.046892 M#:Selfstart failed! Ignoring device's data storage settings at next try! E#:-4009 R#:2
- 4. Schlägt auch dieser Versuch fehl, wird abermals gebootet und das leere Standard-Experiment vorbereitet. Wenn möglich wird nun folgender Eintrag in die Log-Datei 28 geschrieben:

 $z.B.\ 2013-09-11\ 14:12:46.012345\ M\#:Selfstart failed!$ Using empty configuration for next try! E#:-5001 R#:3

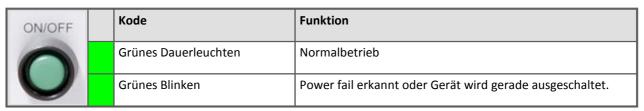

Gelingt dieser Versuch wird der Suspend Modus durch eine rot blinkende LED angezeigt (statt der üblichen grün blinkenden LED). Gelingt dies nicht, wird Schritt 4 beliebig oft wiederholt.

3.5.8 Wake On CAN

Wake On CAN ermöglicht die Sleep Funktionalität in Abhängigkeit der Aktivität am CAN-Bus. Sobald am CAN-Knoten Daten ankommen startet das Gerät die Messung. Nach einer einstellbaren Zeit ohne Aktivität am Bus wird das Gerät wieder in den Sleep Modus versetzt.

Systeme, welche das Messgerät getrennt vom angeschlossenen CAN-Bus versorgen oder schalten vermeiden damit ein zu frühes Aufstarten des Aufnahmegeräts und damit einen unnötigen Stromverbrauch.

Voraussetzung ist die zuvor beschriebene Beschaltung am Remote Stecker, die den Hardware gesteuerten Sleep-Modus ermöglicht. Bislang war der Sleep-Modus möglich, ohne zusätzlicher Vorbereitung in der Gerätesoftware. Die *Wake On CAN* Funktion kommt als UND Bedingung hinzu und muss im CAN-Assistent der Gerätesoftware aktiviert werden.



Die Option *Unterstützung von Wake On CAN* erscheint auf der Karte Gültigkeit, wenn im CAN-Element Baum ein Knoten ausgewählt ist. Falls dies nicht angezeigt wird, ist die Hardware Ihres Geräts für diese Funktion nicht vorbereitet worden.

Unter *Gerät abschalten, falls kein Messwert seit x s* geben Sie die Zeit an, ab der das Ausbleiben der Daten als Abschaltung der CAN-Sensoren interpretiert werden kann.

Jeder Knoten kann individuell eingestellt werden.

3.5.9 Power LED: Bedeutung der Blink- und Farbkodes

3.5.10 LED: Bedeutung der Blink- und Farbkodes

	Kode	Funktion
	grünes Blinken beim Einschalten	Zeigt den normalen Bootvorgang an. Nach erfolgreichem Booten geht die LED aus.
	grünes Blinken im Sekundentakt	Gerät befindet sich im Sleep Modus.
• •	Dauerhaftes Leuchten grün	Fehler nach Selbst- oder Diskstart (z.B. Datenüberlauf auf dem internen Datenträger)
STATUS	Dauerhaftes Leuchten orange	Sleep Signal erkannt - Gerät befindet sich in der Nachlaufzeit.
	Dauerhaftes Leuchten rot	Fehler

Nach dem Aufstarten erlischt die LED oder nach erfolgreichem Start der Messung aus dem Sleep Modus heraus.

3.6 Beschaltung / Pinbelegung CTRL-Buchse

3.6.1 LEMO Typ 0B für BUSLOG

Die Steuerung des Sleep Modus erfolgt durch eine Spannung an +Sleep/Resume High der CTRL-Buchse. Das Gerät wird durch Abschalten dieser Spannung (<1V) in den Sleep-Mode versetzt. Durch Einschalten der Spannung (4 bis 55V) erfolgt das schnelle Aufstarten.

Zunächst muss der Sleep/Resume Modus mit einer Verbindung von Sleep/Resume Mode enable/disable nach – Supply ermöglicht werden.

Zur Pinbelegung des <u>LEMO Steckers</u> 50.

Sleep / Resume mögliche Konfigurationen

1. Beschaltung mit externer Spannungsquelle

Pin 1 und 3 sind verbunden und aktivieren den Sleep/ Resume Betrieb.

Eine externe Spannungquelle an Pin 5 weckt das Gerät aus dem Sleep Modus auf.

Der Bezug der externen Spannungquelle ist mit Pin 6 verbunden.

2. Beschaltung mit Versorgungsspannung von Pin4

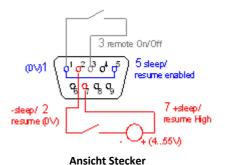
Auch hier sind Pin 1 und 3 verbunden und aktivieren den Sleep/Resume Betrieb.

Die Hilfsspannung des Moduls ist an Pin 4 herausgeführt und wird zur Beschaltung von Pin 5 genutzt.

Der Bezug für die Sleep/Resume Beschaltung an Pin 6 wird bei dieser Variante durch eine Verbindung zu Pin 1 hergestellt.

Remote On/Off

Das Ein/Auschalten des Gerätes kann neben dem Power-On Taster über den *Remote On/Off*-Anschluss an der CTRL-Buchse erfolgen. Dazu wird der *Remote On/Off* (Pin 2) mit dem Bezug der Versorgung -*Supply* (Pin 1) kurzzeitig verbunden.

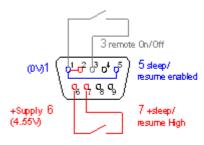

Wird anstelle des Tasters ein Schalter verwendet und die Verbindung zwischen Remote On/Off und Pin1 (–Supply) dauerhaft gebrückt, bleibt das Gerät immer eingeschaltet. Auch mit dem Power-On Taster kann man das Gerät dann nicht mehr ausschalten.

3.6.2 DSUB-9 für imc BUSDAQ-X und imc BUSDAQ-2

Zur Pinbelegung des <u>DSUB-9 Steckers</u> 50.

Sleep / Resume mögliche Konfigurationen

1. Beschaltung mit externer Spannungsquelle


Remote Betrieb.

Pin 1 und 5 sind verbunden und aktivieren den Sleep/

Eine externe Spannungsquelle an Pin 7 weckt das Gerät aus dem Sleep Modus auf.

Der Bezug der externen Spannungsquelle ist mit Pin 2 verbunden.

2. Beschaltung mit Versorgungsspannung von Pin 6

Ansicht Stecker

Pin 1 und 5 sind verbunden und aktivieren den Sleep/Remote Betrieb.

Die Versorgungsspannung des Moduls ist an Pin 6 herausgeführt und wird zur Beschaltung von Pin 7 genutzt.

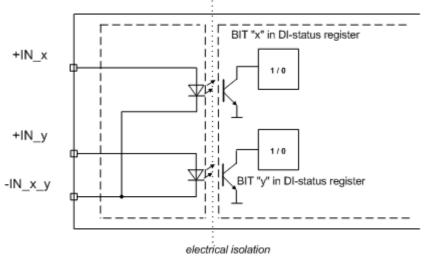
Der Bezug für die Sleep/Resume Beschaltung an Pin 2 wird bei dieser Variante durch eine Verbindung zu Pin 1 hergestellt.

Remote On/Off

Das Ein/Ausschalten des Gerätes kann neben dem Power-On Taster über den *Remote On/Off*-Anschluss an der CTRL-Buchse erfolgen. Dazu wird der *Remote On/Off* (Pin 3) mit dem Bezug der Versorgung -*Supply* (Pin1) über einen Taster kurzzeitig verbunden.

Bei **imc BUSDAQ-X** erfolgt das Ein/Ausschalten des Gerätes nicht über einen Taster sondern über einen statischen Schalter.

Wird anstelle des Tasters ein Schalter verwendet und die Verbindung zwischen Remote *On/Off* (Pin3) und *–Supply* (Pin1) dauerhaft gebrückt, bleibt das Gerät immer eingeschaltet. Auch mit dem Power-On Taster kann man das Gerät dann nicht mehr ausschalten.


3.7 Digitale Ein- und Ausgänge DIO bei imc BUSDAQ-X

Die Variante imc BUSDAQ-X verfügt über 4 digitale Eingänge und 4 digitale Ausgänge.

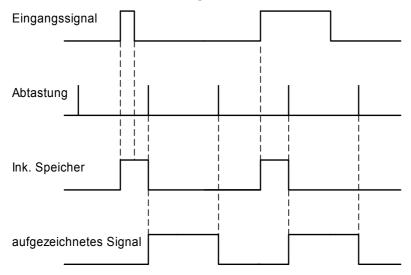
3.7.1 Digitale Eingänge

Parameter	Wert	Bemerkung
Kanäle	4	Je 2 Kanäle gemeinsamen Massebezugspunkt und sind isoliert gegen die anderen
		Eingänge, die Versorgung und CAN-Bus, aber nicht untereinander.

Der digitale Eingangsteil besitzt 4 Eingänge, die mit bis zu 10 kHz abgetastet werden können. Je zwei 2 Eingänge besitzen einen gemeinsamen Massepunkt und sind nicht gegeneinander isoliert. Dieses Eingangspaar ist aber im Potential getrennt gegen die anderen Paare.

Pinbelegung der Anschlussstecker für digitale Eingänge. 51

3.7.1.1 Eingangsspannung

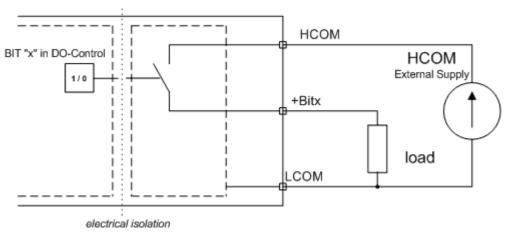

Der Eingangsspannungsbereich für je 2 digitalen Eingänge kann zwischen 5 V (TTL-Bereich) und 24 V eingestellt werden. Die Umschaltung erfolgt durch eine Brücke am Pin LEVEL x/y nach Bezug -IN x/y:

- Ist LEVEL x/y mit IN x/y gebrückt, arbeiten beide Bits mit 5 V bei einer Schwelle von 1,7..1,8 V.
- Ist LEVEL x/y offen, gilt 24 V bei einer Schwelle von 6,95 ...7,05 V.

Ein unbeschalteter Stecker ist standardmäßig auf 24 V eingestellt. Damit wird vermieden, dass der Eingangsspannungsbereich von 5 V nicht versehentlich mit 24 V belegt wird.

3.7.1.2 Abtastzeit und kurze Pegel

Die digitalen Eingänge können wie ein analoger Kanal aufgezeichnet werden. Es ist nicht möglich einzelne Bits zur Aufnahme auszuwählen, es werden immer alle 4 Bit (Digitaler Port) aufgezeichnet. Die Hardware stellt sicher, dass kurze HIGH Pegel innerhalb eines Abtastintervalls erkannt werden.

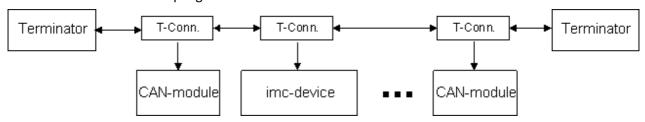


3.7.2 Digitale Ausgänge

Parameter	Wert	Bemerkung
Kanäle	4	Alle Ausgänge und externe Spannungsversorgung haben einen gemeinsamen Massebezugspunkt und sind isoliert gegen die anderen Eingänge, die Versorgung und CANBus, aber nicht untereinander.

Die gewünschte Ausgangsspannung muss von außen an HCOM angeschlossen werden. Sie muss im Bereich von 5 bis 30 V liegen. Die Last wird an Bit_x angeschlossen. Alle Ausgänge und die externe Spannungsquelle haben einen gemeinsamen Bezug an Pin LCOM, sind aber von allen anderen Teilen des Gerätes potential getrennt.

Die Ausgänge werden über Transistoren geschaltet. Die maximalen Stromtragfähigkeit ist 0,7 A begrenzt.



Pinbelegung der Anschlussstecker für digitale Ausgänge. 51

3.8 Feldbus Verkabelung

3.8.1 CAN, CAN FD Verkabelung

imc BUSDAQ Geräte verfügen über 2 bis 8 Knoten, die mit einem T-Stück eingebunden werden. Schließen Sie das T-Stück an die neun polige DSUB Buchse.

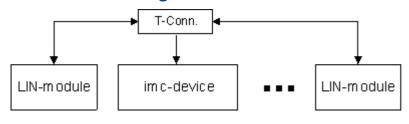
imc BUSDAQ / BUSLOG mit T-Stücken angeschlossen

Beachten Sie, dass bei 1 Mbit/s Übertragungsrate am CAN-Bus die Stich-Leitung an einer T-Verbindung nur maximal 30 cm lang sein darf. Im allgemeinen ist die Verdrahtung im imc BUSDAQ / BUSLOG bereits 30 cm lang. Wenn also ein externes T-Stück angeschlossen wird, muss die T-Verbindung unmittelbar am Stecker sein.

In diesem Zusammenhang ist es egal, ob die übrigen Sensoren mit oder ohne T-Stück angeschlossen sind. Die Grafik zeigt nur eine der Möglichkeiten.

Zu den <u>technischen Daten 39 der CAN-Bus Schnittstelle</u> und zur <u>Anschlussbelegung</u> 46.

Zu den technischen Daten der CAN FD Schnittstelle und zur Anschlussbelegung 46.


Anschluss der Terminatoren

- Terminator-Widerstände von 120 Ω entsprechend CiA.
- Terminatoren werden zwischen Pin 2 und 7 angeschlossen.
- Terminatoren müssen zum Abschluss des Busses an beiden Enden eingesetzt werden. Ansonsten dürfen keine weiteren Terminatoren angeschlossen sein.

imc BUSDAQ / BUSLOG verfügt über interne per Software zuschaltbare Terminatoren. Diese können individuell für jeden Knoten zugeschaltet werden.

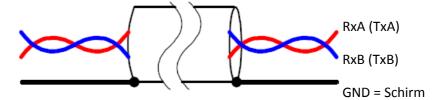
3.8.2 LIN-Verkabelung

LIN-Verkabelung

Zu den <u>technischen Daten</u> 40 der LIN-Bus Schnittstelle und zur <u>Anschlussbelegung</u> 46.

3.8.3 J1587-Verkabelung

Entspricht der Verkabelung für den CAN-Bus. Beim J1587-Bus gibt es jedoch keine Knoten und die Baudrate ist fest auf 9600 eingestellt.


Zu den technischen Daten 39 der J1587-Bus Schnittstelle und zur Anschlussbelegung 46.

3.8.4 ARINC-Verkabelung

imc Standard: DSUB-15

Diese Anschlussbelegung entspricht dem imc-Standard. Sendekanäle und abweichende, kundenspezifische Belegungen können, auf Anfrage, berücksichtigt werden.

Zum Anschluss wird empfohlen verdrillte und geschirmte Leitungen zu verwenden:

Zu den technischen Daten 41 der ARINC-Bus Schnittstelle und zur Anschlussbelegung 48.

3.8.5 FlexRay-Verkabelung

Standard 1x DSUB-9

Zu den <u>technischen Daten</u> 40 der FlexRay-Bus Schnittstelle und zur <u>Anschlussbelegung</u> (optional 2x DSUB-9) 47.

3.8.6 XCPoE-Verkabelung

Standard 1x RJ45

Zu den <u>technischen Daten</u> 41 der XCPoE Schnittstelle und zur <u>Anschlussbelegung</u> 47.

4 Technische Daten

4.1 imc BUSDAQ-2 / imc BUSDAQ-X / imc BUSLOG

Parameter	imc BUSLOG	imc BUSDAQ-2	imc BUSDAQ-X	Bemerkung
PC Anschluss:	10/100 MBit, zulässige Kabellänge bei 100 MBit Ethernet			
Ethernet TCP/IP		max.	100 m gemäß IEEE 802	3
Anzahl der Feldbus- Knoten	2	2	2 bis 8	potentialfrei
Baudrate	max 1 Mbit/s	max 1 Mbit/s	max 1 Mbit/s	
Kanäle	<512	<512	<512	pro Gerät
digitale Eingänge	-	-	4 (DSUB-15)	Optokoppler
digitale Ausgänge	-	-	4 (DSUB-15)	TTL / 24 V potenzialfrei
Netzwerk-Interface	TCP/IP	TCP/IP	TCP/IP	10/100 Mbit/s, RJ 45
Modem extern	-	DSUB-9	DSUB-9	
Modem intern	-	optional	optional	analog, ISDN, GSM Funkmodem
Display	-	extern	extern	DSUB-9
GPS		extern	extern	
WLAN Adapter intern	-	-	optional	
Vector Datenbank	ja	optional	optional	
Datenspeicherung				es gilt der Temperaturbereich
Compact Flash (CF)	optional	optional	optional	des Speichermediums
Festplatte (HDD, SSD)	-	-	optional	
Online-Verrechnung	-	optional	optional	imc Online FAMOS
SynchronBuchse	SMB	BNC	BNC	DCF
Control-Buchse	LEMO Typ 0B	DSUB-9	DSUB-9	
Isolationsfestigkeit	60 V	60 V	60 V	
Stromversorgung	10 V - 50 V _{DC}	10 V - 50 V _{DC}	10 V - 50 V _{DC}	Standard bis 50 V _{DC} ; einige
				Module nur bis 32 V _{DC}
				Typenschild beachten
Versorgungsstecker	Binder: ES	TO Kabeldose RD03	Serie 712 3-polig	
Stromversorgung für CAN pro Knoten	<1 A	<1 A	<1 A	optional auf Knoten 1 und 2
Leistungsaufnahme	200 mW	200 mW	200 mW/Slot	Sleep-Mode @25°C und geladenem Akku
	< 3 W	< 8 W	< 8 W	Mess-Modus
USV	1 s	1 s	1 s	integriert (Super-Caps), Abschaltverzögerung bei Spannungsausfall
Ladezeit der USV Super-Caps	3 min.	3 min.	8 min.	Mindest-Betriebsdauer für volle USV-Funktionalität
Aufstartzeit	0,2 s	0,2 s	0,2 s	nach Sleep-Mode
	30 s	30 s	30 s	nach PowerOn
Übergang in / aus Sleep-Mode	externes Signal oder Brücke + Schalter oder über CAN Botschaft			555V
Temperaturbereich	-40+85°C	-40+85°C	-40+85°C	Betriebstemperatur

Maße in mm	185 x 30 x 110	185 x 51 x 110	185 x 110 x 110	LxBxH
Gewicht	650 g	850 g	2 kg (8 Knoten)	

4.2 Weitere technische Angaben

4.2.1 Feldbus

4.2.1.1 CAN-Bus Interface

Parameter	Wert	Bemerkungen
Zahl der CAN-Knoten	2	je ein potentialfreier, galvanisch isolierter Knoten (jeweils CAN IN und CAN OUT) pro Stecker
Anschluss-Stecker	2x DSUB-9	
Topologie	Bus	
Übertragungsprotokoll	per Software umschaltbar:	individuell für jeden Knoten
	CAN High Speed (max. 1 MBaud)	nach ISO 11898
	CAN Low Speed (max. 125 KBaud)	nach ISO 11519
Betriebsart	Multi Master Prinzip	
Datenflußrichtung	senden und empfangen	
Baudrate	5 kBit/s bis 1 MBit/s	per Software einstellbar; Maximum je nach gewähltem Protokoll (High/Low Speed)
max. Kabellänge bei		CAN High Speed
Übertragungsrate	25 m bei 1000 kBit/s 90 m bei 500 kBit/s	Verzögerung des Kabels 5,7 ns/m
Terminierung	120 Ω	per Software für jeden Knoten zuschaltbar
Isolationsfestigkeit	60 V	gegen Systemmasse (Gehäuse, CHASSIS)
Direktes Parametrieren von imc CANSAS Messmodulen	ja	über den CAN-Knoten des Gerätes mittels imc STUDIO

Zur <u>Anschlussbelegung</u> 46 und der <u>Verkabelung</u> 36 der CAN-BUS-Schnittstelle.

4.2.1.2 J1587-Bus Interface

Parameter	Wert	Bemerkungen
Knoten	1	
Anschluss-Stecker	1x DSUB-9	
Topologie	Bus	
Übertragungsprotokoll	J1587	
	mit RS485 Interface	Sonderversion auf Anfrage
Datenflußrichtung	senden und empfangen	
Baudrate	9600 Bit/s	
Isolationsfestigkeit	60 V	gegen Systemmasse (Gehäuse, CHASSIS)

Zur <u>Anschlussbelegung</u> 46 und der <u>Verkabelung</u> 37 der J1587-BUS-Schnittstelle.

4.2.1.3 LIN-Bus Interface

Parameter	Wert	Bemerkungen
Knoten	2	pro Knoten LIN_IN / LIN_OUT
Anschluss-Stecker	2x DSUB-9	ein DSUB pro Knoten
Topologie	Bus	
Übertragungsprotokoll	LIN 2.1, LIN 2.0, LIN 1.3	LIN 1.3 und LIN 2.x können auf einem Bus gleichzeitig laufen.
Betriebsart	Master und/oder Slave	
Datenflußrichtung		
Versenden	Display Variablen, virtuelle Bits	
Empfangen	LIN Daten in Messkanälen	
Baudrate	1 bis 20 kBit	
Datendurchsatz	30 kS/s	
Terminierung	Pull up Widerstand	per Software schaltbar Master/Slave
Isolationsfestigkeit	60 V	gegen Systemmasse (Gehäuse, CHASSIS)

Zur <u>Anschlussbelegung</u> 46 und der <u>Verkabelung</u> 36 der LIN-BUS -Schnittstelle.

4.2.1.4 FlexRay Interface

Parameter	Wert	Bemerkungen
Zahl der FlexRay Knoten	1	1x Channel A+B
	zusätzlich 1 Kaltstart Knoten	bei Modulen vom Typ FlexRay2
Anschluss-Stecker		
Standard	1x DSUB-9 pro Modul	optional 2x DSUB-9 (Kanal A u. B separat)
Topologie	Bus	
Übertragungsprotokoll	FlexRay Protokoll Spezifikation V3.0	
	XCP- Spezifikationen Universal Measurement and Calibration	ASAM_AE_MCD-1_XCP_BS_Protocol- Layer_V1-2-0.pdf "ASAM MCD-1 (XCP); Protocol; Protocol Layer Specification;
	Version 1.2.0; Date: 2013-06-20"	 ASAM_AE_MCD-1_XCP_AS_Flexray- Transport-Layer_V1-2-0.pdf "ASAM MCD-1 (XCP on FlexRay); Protocol; FlexRay Transport Layer;
Betriebsart	Sync-Knoten, Kaltstart-Knoten oder normaler Knoten	
Datenflussrichtung		
Versenden	Display Variablen, Virtuelles Bit, Prozessvektoren und Etherbits	Zyklisch und SingleShot-Frames mit imc Online FAMOS
Baudrate	2,5 / 5,0 oder 10,0 MBit	
max. Kabellänge bei Übertragungsrate	siehe FlexRay Protokoll	
Datendurchsatz		pro Modul
	max. 30 kSamples/s	
	max. 60 kSamples/s	aktuelle Module vom Typ "FexRay2"
Isolationsfestigkeit	60 V	gegen Systemmasse (Gehäuse, CHASSIS)

Zur <u>Anschlussbelegung</u> [47] und der <u>Verkabelung</u> [37] der FlexRay-Schnittstelle.

4.2.1.5 XCPoE Master-Slave Interface

Parameter	Wert	Bemerkungen
Knoten	1	
Anschluss-Stecker	1x RJ45	
Topologie	Stern	
Übertragungsprotokoll	"XCP -Part 1- Overview";	Ver. 1.0; ASAM e.V.
	"XCP -Part 2- Protocol Layer Specification"	Ver. 1.0; ASAM e.V.
	"XCP -Part 3- Transport Layer Specification XCP on Ethernet (TCP_IP and UDP_IP)";	Ver. 1.0; ASAM e.V.
	"XCP -Part 4- Interface Specification"	Ver. 1.0; ASAM e.V.
Betriebsart (Bestelloption)	Master	A2L-Datei wird eingelesen (auch XCPplus wird unterstützt)
	oder Slave	A2L-Datei wird erstellt
Versendbare Kanaltypen sofern als Slave betrieben	einige Messkanäle (analoge, digitiale, Feldbus-, sowie virtuelle Kanäle (OFA)	
Datenrate	max. 100 kHz max. 10 kHz	je nach Systemkonfiguration Slave Master
Max Kabellänge	100 m	
Hardware Schnittstelle (Physical Layer)	Ethernet 100 Mbit	
Isolationsfestigkeit	Standard Ethernet Spezifikation	

Zur <u>Anschlussbelegung</u> 47 und der <u>Verkabelung</u> 37 der XCPoE-Schnittstelle.

4.2.1.6 ARINC-Bus Interface

Parameter	Wert typ.	min. / max.	Bemerkungen
Anzahl der Receive Kanäle	8	3	empfangen
Anzahl der Transmit Kanäle	4	4	senden
Anschluss-Stecker	2x DS	UB-15	
Übertragungsprotokoll	ARIN	C 429	
Baudrate	Low (12,5 kbit/s) High (100 kbit/s)		
Max Spannung für jeden Rx Anschluss	±29 V		gegen Systemmasse (CHASSIS)
Spannung für jeden Tx Anschluss	5 V	4,5 V / 5,5 V	gegen GND "Null": min -0,25 V max 0,25 V
	10 V	9 V / 11 V	differentiell "Null": min -0,5 V max 0,5 V
Isolationsfestigkeit	keine galvanische Isolation		

Zur <u>Anschlussbelegung</u> 48 und der <u>Verkabelung</u> 37 der ARINC-Schnittstelle.

4.2.2 Farb Display

Parameter	Farb Display		
Display	5,7 ² TFT		
Farben	65536		
Auflösung	320	x 240	
Backlight	L	ED	
Kontrast (typ.)	60	00:1	
Helligkeit (typ.)	450	cd/m²	
Verbindungsleitung	RS232,	max. 2 m	
Baugröße (B x T x H)	192 x 160 x 30 mr	n (ohne Anschlüsse)	
Größe des Anzeigenfeldes	ca. 11,5 x 8,6 cm		
Gewicht	ca.	1 kg	
Versorgungsspannung	9 V bi	s 32 V _{DC}	
	6 V bis 50 V _D	oc auf Anfrage	
Leistungsaufnahme	ca. 3 W bei 1	L00% Backlight	
Temperaturbereich	-20°C bis +60°C	Betriebstemperatur	
	≤+85°C	Modul-Innentemperatur	
Rel. Luftfeuchtigkeit	80% b	ois 31°C,	
	über 31°C: linear abnehmend bis 50%, siehe DIN EN61010-1		
Anschlüsse	DSUB-9 (female) zum Anschluss ans Messgerät		
	3 polig Binder (Metall) für externe Stromversorgung		
Sonstiges	Folientastatur mit 15 Tasten		
	Robustes Metallgehäuse		
	Entspiegelte Glasscheib	e zum Schutz des Displays	

Die <u>Beschreibung des Display</u> 21 und zur <u>Anschlussbelegung</u> 49.

Mitgeliefertes Zubehör

- Modemkabel für den erweiterten Temperaturbereich
- AC/DC Tischnetzteil mit Steckertyp Binder
- POWER Stecker

4.2.3 Synchronisation und Zeitbasis

Zeitbasis pro Gerät ohne externe Synchronisation				
Parameter	Wert typ.	min. / max.	Bemerkungen	
Genauigkeit RTC		±50 ppm	nicht abgeglichen (Standard-Geräte), bei 25°C	
		1 μs (1 ppm)	abgeglichene Geräte (auf Anfrage), bei 25°C	
Drift	±20 ppm	±50 ppm	-40°C bis +85°C Betriebstemperatur	
Alterung		±10 ppm	bei 25°C; 10 Jahre	

Genauigkeit der Zeitbasis mit externer Synchronisation				
Parameter	GPS	DCF77	IRIG-B ***	NTP ***
unterstützte Formate	NMEA / PPS*		B002	Version 4
			B000, B001, B003**	(abwärts kompatibel)
Genauigkeit		±1 μs		<5 ms nach ca. 12 h
Jitter (max.)		±8 μs		
Spannungspegel	TTL (PPS*)	5 V TTL Pegel		
	RS232 (NMEA)			
Eingangs-widerstand	1 kΩ (pull up)	20 kΩ (pull up)		
Anschluss	DSUB-9 Anschluss "GPS" nicht isoliert	BNC Buchse "SYNC" (isoliert, je nach Ausführung)		Ethernet
Schirmpotential		bei BNC Buchse nicht isoliert: Systemmasse		
Anschluss		bei BNC Buchse is	soliert: isolierter Signal-GND	

^{*} PPS (Pulse per second): Sekundensignal mit Impuls >5ms ist notwendig

^{***} NTP und IRIG-B ist standardmäßig nicht verfügbar. Das betrifft die BUSDAQ Standard Geräte mit Seriennummern kleiner 140000. **Auf Anfrage** ist NTP und IRIG-B mit einer BUSDAQ Sondervariante verfügbar. Diese Sondervarianten wären dann Geräte mit Seriennummern > 140000 und gehören zur Gerätegruppe 5. Beachten Sie die vom Standard abweichende Beschreibung in einer separaten Sonderbeschreibung, die der Lieferung beigelegt wird.

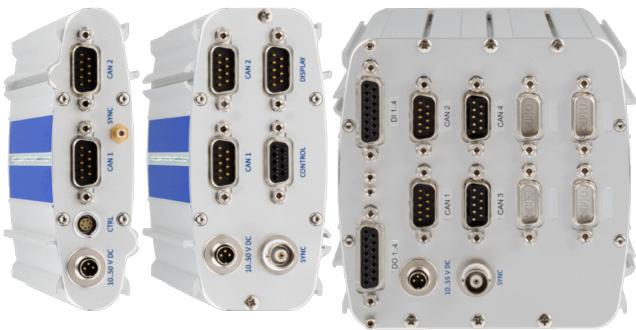
Synchronisation über	Synchronisation über mehrere Geräte mit DCF (Master/Slave)			
Parameter	Wert typ.	min. / max.	Bemerkungen	
max. Kabellänge		200 m	BNC Kabel RG58 (Die Kabellaufzeit ist zu berücksichtigen)	
max. Anzahl Geräte		20	nur Slave	
Gleichtaktspannung	0 V		bei BNC Buchse nicht isoliert: Die Geräte müssen das gleiche Massepotenzial haben, sonst kann es zu Problemen bei der Signalqualität (Signalflanken) kommen. Abhilfe siehe ISOSYNC	
		max. 50 V	bei BNC Buchse isoliert: SYNC-Signal bereits isoliert, zum störungsfreien Betrieb auch bei unterschiedlichen Massepotentialen (Erdschleifen)	
Spannungspegel	5 V			
DCF Ein-/Ausgang	"SYNC" A	Anschluss	BNC	
Schirmpotential DCF- Anschluss	System	masse	siehe Bemerkung Gleichtaktspannung	

^{**} nur die Auswertung der BCD Information

44 Technische Daten

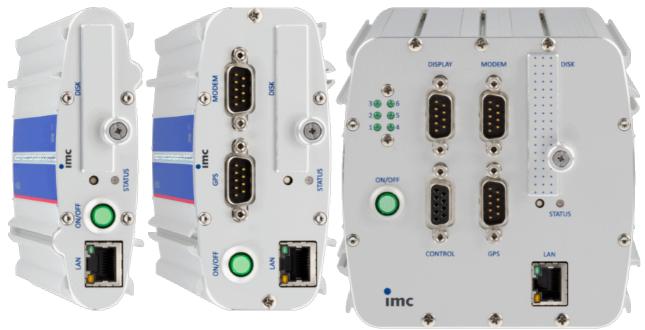
Isolierter SYNC-Anschluss				
Parameter	Wert typ.	Bemerkungen		
Schirmpotential BNC Anschluss	isoliert, nicht verbunden mit Gehäuse	markiert durch einen gelben Ring auf der Front je nach Lieferzeitpunkt		
Isolationsfestigkeit	300 V	1 Minute (Prüfspannung)		
Verzögerung	<100 ns	@ 25°C		

ISOSYNC (optionaler externer Zusatz zur isolierten Entkopplung des SYNC Signals)				
Parameter	Wert typ. min. max. Bemerkungen			
Isolationsfestigkeit	1000 V		1 Minute (Prüfspannung)	
Verzögerung	5 μs		@ 25°C	
Temperaturbereich		-35°C bis +80°C		


4.2.4 ACC/SYNC-FIBRE

Parameter	Wert typ.	min./ max.	Bemerkungen
Nutzbar mit	GPS Buchse am imc Messgerät		Erfordert Umbau des zu betreibenden Geräts (Gerätevorbereitung für SYNC- FIBRE).
			Es kann entweder SYNC-FIBRE oder die SYNC-Buchse (BNC) genutzt werden, nicht beides gleichzeitig.
Anschlüsse	2x ST S	Stecker	LWL
	1x DSUB-9 (fer	nale) 1 m Kabel	Anschluss an das imc Messgerät
Versorgungsspannung	5 V	±10%	aus Geräte interner Sensorversorgung
Leistungsaufnahme	0,5 W	±10%	
Propagation Delay tPD	25 ns	75 ns	SYNC-In zu Opto-Out bzw. Opto-In zu Sync-Out
Max. Länge Glasfaser-Kabel		500 m	Länge der Glasfaserstrecke zwischen zwei ACC/SYNC-FIBRE
Gesamtverzögerung	8 μs		SYNC-In erstes Gerät zu SYNC-Out letztes Gerät
Glasfaser Steckertyp	S	Т	
Glasfaser	50 / 1	25 μm	
	62,5 / 125 μm		
Wellenlänge	820 nm		
Allgemein			
Betriebstemperatur (erweitert)	-40°C bi	s + 85°C	Betauung temporär zulässig

Zur Beschreibung des ACC/SYNC-FIBRE 22


5 Anschluss-Stecker

Rückseite

imc BUSLOG | imc BUSDAQ-2 | imc BUSDAQ-X

Frontseite

imc BUSLOG | imc BUSDAQ-2 | imc BUSDAQ-X

5.1 Pinbelegung der Feldbusse

5.1.1 CAN-Bus, CAN FD (DSUB-9)

DSUB-PIN	Signal	Beschreibung	Nutzung im Gerät
1	+CAN_SUPPLY	optional Versorgung	standardmäßig unbenutzt* (Versorgung I < 1 A)
2	CAN_L	dominant low bus line	angeschlossen
3	CAN_GND	CAN Ground	angeschlossen
4	nc	reserviert	nicht beschalten
5	-CAN_SUPPLY	optional Versorgung	standardmäßig unbenutzt* (Versorgung I < 1 A)
6	CAN_GND	optional CAN Ground	angeschlossen
7	CAN_H	dominant high bus line	angeschlossen
8	nc	reserviert	nicht beschalten
9	nc	reserviert	nicht beschalten

Zu den <u>technischen Daten 39</u> und der <u>Verkabelung 36</u> der CAN-Bus Schnittstelle.

5.1.2 LIN-Bus (DSUB-9)

DSUB-PIN	Signal	Beschreibung
1	nc	
2	nc	
3	LIN_GND	LIN Ground
4	nc	
5	nc	
6	LIN_GND	Optional LIN Ground
7	LIN_INPUT/OUTPUT	LIN bus line
8	nc	
9	nc	

Zu den <u>technischen Daten 40 und zur Verkabelung 36 der LIN-Bus Schnittstelle.</u>

5.1.3 J1587-Bus (DSUB-9)

DSUB-PIN	Signal	Beschreibung	Nutzung im Gerät
1	nc	reserviert	unbenutzt
2	TX/RX +	J1587 bus line	angeschlossen
3	TX/RX -	J1587 Ground	angeschlossen
4	nc	reserviert	unbenutzt
5	nc	reserviert	unbenutzt
6	TX/RX +	J1587 bus line	angeschlossen
7	TX/RX -	J1587 Ground	angeschlossen
8	nc	reserviert	unbenutzt
9	nc	reserviert	unbenutzt

^{*} Optional und nur an CAN Knoten 1 und 2, siehe DC-Versorgung am CAN-Knoten 1 oder 2 12.

Zu den technischen Daten 39 und der Verkabelung 37 der J1587-Bus Schnittstelle.

5.1.4 FlexRay-Bus (DSUB-9)

imc Standard Ausführung mit einem DSUB-9 zwei Kanälen pro DSUB:

DSUB-Pin	Signal	Beschreibung
1	n.c.	
2	BM Kanal A	negativer Bus-Anschluss Kanal A
3	GND	FlexRay Ground
4	BM Kanal B	negativer Bus-Anschluss Kanal B
5	GND	FlexRay Ground
6	n.c.	
7	BP Kanal A	positiver Bus-Anschluss Kanal A
8	BP Kanal B	positiver Bus-Anschluss Kanal B
9	n.c.	

Optionale Ausführung mit zwei DSUB-9: mit je einem Kanal pro DSUB (CON1 und CON2)

DSUB-Pin	CON1	CON2
1	n.c.	n.c.
2	BM Kanal A (negativer Bus-Anschluss Kanal A)	BM Kanal B (negativer Bus-Anschluss Kanal B)
3	GND	GND
4	n.c.	n.c.
5	GND	GND
6	n.c.	n.c.
7	BP Kanal A (positiver Bus-Anschluss Kanal A)	BP Kanal B (positiver Bus-Anschluss Kanal B)
8	n.c.	n.c.
9	n.c.	n.c.

Zu den <u>technischen Daten 40</u> und der <u>Verkabelung 37</u> der FlexRay-Bus Schnittstelle.

5.1.5 XCPoE (RJ45)

Standard Ethernet 1x RJ45.

Zu den technischen Daten 41 und der Verkabelung 37 der XCPoE Schnittstelle.

5.1.6 ARINC-Bus (DSUB-15)

CON 1					
ARI	ARINC-Interface mit 8 Rx Kanälen			nterface mit 8 F	Rx und 4 Tx Kanälen
DSUB Pin	Signal	Bezeichnung	DSUB Pin	Signal	Bezeichnung
	Standard	4x Rx		Standard 4x	Rx; 2x Tx
1	Rx1A	Empfangskanal 1A	1	Rx1A	Empfangskanal 1A
9	GND	GND	9	Tx1A	Sendekanal 1A
2	Rx1B	Empfangskanal 1B	2	Rx1B	Empfangskanal 1B
10	GND	GND	10	Tx1B	Sendekanal 1B
3	Rx2A	Empfangskanal 2A	3	Rx2A	Empfangskanal 2A
11	GND	GND	11	GND	GND
4	Rx2B	Empfangskanal 2B	4	Rx2B	Empfangskanal 2B
12	GND	GND	12	GND	GND
5	Rx3A	Empfangskanal 3A	5	Rx3A	Empfangskanal 3A
13	GND	GND	13	Tx2A	Sendekanal 2A
6	Rx3B	Empfangskanal 3B	6	Rx3B	Empfangskanal 3B
14	GND	GND	14	Tx2B	Sendekanal 2B
7	Rx4A	Empfangskanal 4A	7	Rx4A	Empfangskanal 4A
15	GND	GND	15	GND	GND
8	Rx4B	Empfangskanal 4B	8	Rx4B	Empfangskanal 4B

CON 2					
ARINC-Interface mit 8 Rx Kanälen			ARINC-Interface mit 8 Rx und 4 Tx Kanälen		
DSUB Pin	Signal	Bezeichnung	DSUB Pin	Signal	Bezeichnung
	Standard	4x Rx		Standard 4x	Rx; 2x Tx
1	Rx5A	Empfangskanal 5A	1	Rx5A	Empfangskanal 5A
9	GND	GND	9	Tx3A	Sendekanal 3A
2	Rx5B	Empfangskanal 5B	2	Rx5B	Empfangskanal 5B
10	GND	GND	10	Tx3B	Sendekanal 3B
3	Rx6A	Empfangskanal 6A	3	Rx6A	Empfangskanal 6A
11	GND	GND	11	GND	GND
4	Rx6B	Empfangskanal 6B	4	Rx6B	Empfangskanal 6B
12	GND	GND	12	GND	GND
5	Rx7A	Empfangskanal 7A	5	Rx7A	Empfangskanal 7A
13	GND	GND	13	Tx4A	Sendekanal 4A
6	Rx7B	Empfangskanal 7B	6	Rx7B	Empfangskanal 7B
14	GND	GND	14	Tx4B	Sendekanal 4B
7	Rx8A	Empfangskanal 8A	7	Rx8A	Empfangskanal 8A
15	GND	GND	15	GND	GND
8	Rx8B	Empfangskanal 8B	8	Rx8B	Empfangskanal 8B

Zu den <u>technischen Daten 41 und der Verkabelung</u> 37 der ARINC-Bus Schnittstelle.

5.2 DSUB-9 Pinbelegung

5.2.1 Display

DSUB-PIN	Signal	Beschreibung	Nutzung im Gerät
1	DCD	Vcc 5 V	angeschlossen
2	RXD	Receive Data	angeschlossen
3	TXD	Transmit Data	angeschlossen
4	DTR	5 V	angeschlossen
5	GND	Ground	angeschlossen
6	DSR	Data Set Ready	angeschlossen
7	RTS	Ready To Send	angeschlossen
8	CTS	Clear To Send	angeschlossen
9	R1	über Pulldown zu GND	angeschlossen

Zur Beschreibung 21 und den technischen Daten des Displays 42.

5.2.2 Modem (extern)

Nur für imc BUSDAQ-2 und imc BUSDAQ-X

DSUB-PIN	Signal	Beschreibung	Nutzung im Gerät
1	DCD	Data Carrier Detect	angeschlossen
2	RxD	Receive Data	angeschlossen
3	TxD	Transmit Data	angeschlossen
4	DTR	Data Terminal Ready	angeschlossen
5	GND	Ground	angeschlossen
6	DSR	Data Set Ready	angeschlossen
7	RTS	Ready To Send	angeschlossen
8	CTS	Clear To Send	angeschlossen
9	nc	Reserviert	unbenutzt

5.2.3 GPS Empfänger

DSUB-9		GPS 18 LVC	GPS 18 - 5Hz
Pin	Signal	Farbe	Farbe
1	Vin	Rot	Rot
2	RxD1*	Weiß	Weiß
3	TxD1	Grün	Grün
4	-	-	-
5	GND, PowerOff	2x Schwarz	2x Schwarz
6	-	-	-
7	PPS (1 Hz Takt)	Gelb	Gelb
8	-	-	-
9	-	-	-

^{*} Belegung am Messgerät. An der GPS-Maus sind Rx und Tx vertauscht.

5.3 CTRL-Buchse Pinbelegung

LEMO Typ 0B für imc BUSLOG

Pin	Signal	Beschreibung
1	-Supply	0 V
2	Remote On/Off	Ein/Ausschalten über eine kurzzeitige Verbindung (Taster) von diesem Pin zu –Supply (Pin1)
3	Sleep/Resume Mode enable/disable	Aktivierung des Sleep/Resume Modus durch Brücke nach -Supply (Pin1)
4	+V _{AUX}	5 V oder 10 V bis 55 V (Versorgungsspannung des Netzteils (über R=1k Ω)) Diese Spannung darf nur für Steuersignale verwendet werden. Nicht belasten!
5	+Sleep / Resume High	Sleep Modus: 01 V; Resume Modus: 455 V
6	-Sleep / Resume Low	0 V

Zur Beschreibung des <u>LEMO Steckers</u> 31

DSUB-9 für imc BUSDAQ-2 und imc BUSDAQ-X

Pin	Signal	Beschreibung
1	-Supply	
2	-Sleep / Resume Low	0 V
3	Remote On/Off	Ein/Ausschalten über eine kurzzeitige Verbindung (Taster) ¹ von diesem Pin zu –Supply (Pin1)
4	NC	
5	Sleep/Resume Mode enable/disable	Aktivierung des Sleep/Resume Modus durch Brücke nach Pin1 (-Supply)
6	+V _{AUX}	5 V oder 10 V bis 55 V (Versorgungsspannung des Netzteils (über R=1 k Ω)) Diese Spannung darf nur für Steuersignale verwendet werden. Nicht belasten!
7	+Sleep / Resume High	Sleep Modus: 0 V to 1 V; Resume Modus: 4 V to 55 V
8	NC	
9	NC	

Zur Beschreibung des <u>DSUB9 Steckers</u> 32

Bei imc BUSDAQ-X erfolgt das Ein/Ausschalten des Gerätes nicht über einen Taster sondern über einen statischen Schalter.

5.4 DI/DO Pinbelegung (DSUB-15)

nur imc BUSDAQ-X

Kunststoff Metall-Stecker

ACC/DSUB-		ACC/DSUBM-		DI2-4		DO4	
DSUB	SLIB	DSUB		DIGIT	AL IN	DIGITA	AL OUT
Pin	Klemme	Pin	Klemme	Standard * bis MultilO6	ab MultilO7	Standard * bis MultilO6	ab MultiIO7
1				+IN1		BIT1	
9	1	9	1	-IN1/2	+IN1	нсом	BIT1
2	2	2	2	+IN2	+IN2	BIT2	BIT2
10	3	10	3	LEVEL 1/2	-IN1/2	нсом	BIT3
3	4	3	4	+IN3	+IN3	BIT3	BIT4
11	5	11	5	-IN3/4	+IN4	нсом	
4	6	4	6	+IN4	-IN3/4	BIT4	
12	7	12	7			нсом	
5	8	5	8			LCOM	
13	9	13	9		LEVEL 1/2 **		
6	10	6	10				
14	11	14	11				НСОМ
7	12	7	12		LEVEL 3/4 **		LCOM
15	14	15	15				LCOM
8	17	8	18				
	13		13				
	18		14				
(J)	15	(J)	16		CHASSIS		CHASSIS
(H)	16	(T)	17		CHASSIS		CHASSIS

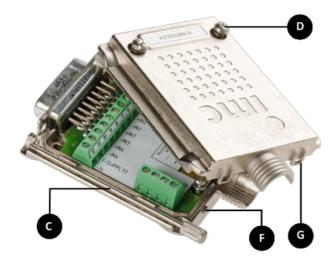
* WICHITIGER HINWEIS

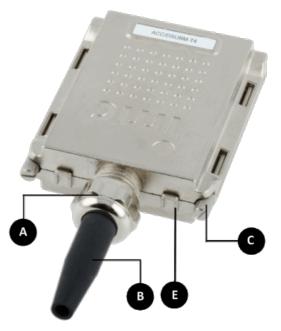
Für diese Steckerbelegung existiert kein imc-DSUB-15 Stecker! Ab Hardwareversion Multi-IO-7 gilt die Belegung der ACC/DSUB-DI2-4 bzw. ACC/DSUB-DO4.

** offen= 24V; LEVEL1/2 und IN1/2 bzw. LEVEL3/4 und IN3/4 gebrückt= TTL

Beschreibung für digitale <u>Eingänge</u> 33 bzw. <u>Ausgänge</u> 35.

Sie können die MultilO Varianten am Taster zum Tausch der CF-Card erkennen.


Ab Multi IO7 ist der Taster weiß und eingelassen. Zum Betätigen benötigen Sie z.B. einen Kugelschreiber. Bis Multi IO6 war der Taster schwarz und stand hervor.


5.4.1 Metall-Stecker

ACC/DSUBM-xxx

Öffnen des Metall-Steckers:

- 1. Lösen der Druckschraube
- 2. Entnahme des Knickschutzes
- 3. Lösen der Deckelschrauben
- 4. Anheben des Deckels im DSUB-Bereich und entriegeln des Steges aus dem Schlitz

A: Druckschraube

B: Knickschutz

C: Befestigungsschraube für die Frontplatte

D: Deckelschrauben

E: Rastung (Steg / Schlitz)

F: Steg

G: Schlitz

Schließen des Metall-Steckers:

- 1. Den Deckel im leichten Winkel (siehe das folgende Bild) auf das Unterteil ansetzen, so dass der Steg im Schlitz einrastet.
- 2. Deckel und Unterteil mit einem hörbaren Klick am DSUB-15 zusammendrücken. Der DSUB darf nicht vom Deckel gedrückt werden, er muss frei in der Führung liegen.
- 3. Knickschutz einsetzen
- 4. Druckschraube muß wieder angeschraubt werden
- 5. Deckelschrauben können festgezogen werden

6 Lieferumfang

Mitgeliefertes Zubehör

- 230/110 V Netzadapter (optional mit länderspezifischen Netzkabel)
- Versorgungsstecker für Spannungsversorgung über ESTO Kabledose RD03 Serie 712 3-pol.
- Gedruckte Erste Schritte mit: imc BUSDAQ / imc BUSLOG
- Test Zertifikat
- 1x Ethernet-Netzwerkkabel mit Rastnasenschutz (ungekreuzt, 2m)
- Remote Stecker 6-poliger LEMO.0B.306 bei Lieferung eines imc BUSLOG und imc BUSDAQ-2-ET

Optional

- Freischaltung Vector Datenbank (CAN-DB) (bei imc BUSLOG standard)
- imc FAMOS Reader inkl. Kurvenmanagerhandbuch
- imc Online FAMOS, imc Online FAMOS Professional, Klassierkit. (nicht bei imc BUSLOG)
- CAN-Kabel 2 m auf DSUB-9 CAN/Kabel-Typ2
- 1 Set CAN Terminatoren auf DSUB-9 (CAN-Termi)
- Y-Kabel (CAN/Y-Kabel 25 cm)
- Compact Flash
- Gedruckte Handbücher

7 Letzte Änderungen

Ergänzungen und Fehlerbehebungen in Version 3 R 6

Allgemein	Neu
	Firmenname: imc Test & Measurement GmbH

Ergänzungen und Fehlerbehebungen in Version 3 R 5

Kapitel	Ergänzungen	
Allgemein	Designverbesserungen, Rechtschreibkorrekturen	
GPS	RS232 Port Einstellungen, <u>hier finden die Bedingungen, die erfüllt sein müssen</u> 25	
Kapitel	Fehlerbehebung	
ARINC	DSUB Belegung korrigiert	

Ergänzungen und Fehlerbehebungen in Version 3 R 4

Kapitel	Fehlerbehebung	
Allgemein	Der BUSDAQ-X kann an der Control Buchse nicht mit einem Taster sondern nur mit einem Schalter betrieben werden.	

Ergänzungen und Fehlerbehebungen in Version 3 R 3

Kapitel	Ergänzungen
Allgemein	Dateigröße verkleinert durch Optimierung der Bilder

Ergänzungen und Fehlerbehebungen in Version 3 R 2

Kapitel	Ergänzungen	
Versorgung	Abbildung der Anordnung der Pins; 3-polige Kabelbuchsen Typ: Binder	
Lieferumfang 53	neues Netzwerkkabel mit Rastnasenschutz	
Kapitel	Fehlerbehebung	
FlexRay	Tippfehler in der Pinbelegung bei der Variante mit 2 DSUB-9	

Ergänzungen und Fehlerbehebungen in Version 3 R 1

Kapitel	Ergänzungen	
Allgemeines	Gliederung verbessert	
	Bilder der Geräte im neuen imc Design	

Version	Datum	Version	Datum der Version
aktuell publiziert	aktuell publiziert	im letzten Handbuch	im letzten Handbuch
V 1.7	09.06.2015	V 1.6	21.11.2013

8 Symbolerklärungen

Tipps und Empfehlungen

Hinweis!

...hebt nützliche Tipps und Empfehlungen sowie Informationen für einen effizienten und störungsfreien Betrieb hervor.

Verweis

...zeigt an, wo sie weiterführende oder verwandte Informationen finden.

Anschlussbilder

Die Zahlen in den Anschlussbildern entsprechen den Pinnummern der LEMO Buchsen.

Warnhinweise

Warnhinweise sind in dieser Betriebsanleitung durch Symbole gekennzeichnet. Die Hinweise werden durch Signalworte eingeleitet, die das Ausmaß der Gefährdung zum Ausdruck bringen. Die Hinweise unbedingt einhalten und umsichtig handeln, um Unfälle, Personen- und Sachschäden zu vermeiden.

Vorsicht!

...weist auf eine gefährliche Situation hin oder gibt einen wichtigen Hinweis.

Gefahr vor elektrischem Schlag!

...warnt vor der Gefahr eines <u>elektrischen Schlags</u>. Gemeint ist hier die von der Messquelle ausgehende und an die Messeingänge gebrachte Gefährdung. Das Messgerät selbst erzeugt keine gefährlichen Spannungen.

Vorsicht!

...weist auf eine möglicherweise gefährliche Situation hin, die zu Sachschäden führen kann, wenn sie nicht gemieden wird.

Symbole auf Ihrem Messgerät

Achtung! Allgemeine Gefahrenstelle!

Da für die Angabe der Bemessungsgrößen an den Mess-Eingängen kein ausreichender Platz ist, entnehmen Sie vor dem Betrieb die Bemessungsgrößen der Mess-Eingänge dieser Betriebsanleitung.

Achtung! Gefahr des elektrischen Schlags

...weist sowohl auf die von der Messquelle ausgehende und an die Messeingänge gebrachte Gefährdung (z.B.: HV-Module) als auch auf eine vom Messgerät erzeugte gefährliche Spannung hin (z.B.: MIC-SUPPLY).

Recycling!

...weist nach WEEE Richtlinie darauf hin, dass das mit diesem Symbol gekennzeichnete Produkt nicht in den Hausmüll geworfen werden darf. Das Produkt wurde nach dem 13. August 2005 "in den Verkehr" gebracht.

Index	CAN-Bus Verkabelung 36 CAN-Bus: Pinbelegung 46
	CE 4
μ	CE-Konformität 4
μ -Disk 21	CF-Karte 21
Δ.	CHASSIS 14
A	Control Stecker 14
Abtastzeit	CTRL Buchse BUSLOG: Pinbelegung 31
Einschränkungen 18	CTRL-Buchse 50
Summenabtastrate 18	CTRL-Buchse 50
AC-Adapter 14	D
ACC/SYNC-FIBRE 22	DCF:Technische Daten 43
AGB 4	DC-Geräte: Erdung und Schirmung 14
Akku 15	Digitale Ausgänge: Anschlussbelegung 51
Akkumulatoren 15	Digitale Ausgänge: BUSDAQ-X 35
Allgemeinen Geschäftsbedingungen 4	Digitale Ausgänge: Pinbelegung 51
Änderungswünsche 4	Digitale Eingänge: Anschlussbelegung 51
Anschluss 45	Digitale Eingänge: BUSDAQ-X 33
Anschlussbelegung	Digitale Eingänge: Pinbelegung 51
Display 49	DIN-EN-ISO-9001 4
Anschlussbelegung Modem	Diskstart 26
DSUB-9 49	Display 20
Anschlussbelegung: Digitale Ausgänge 51	Anschlussbelegung 49
Anschlussbelegung: Digitale Eingänge 51	Bohrungen 21
ARINC-Bus Interface	Gehäusegröße 21
Technische Daten 41	Übersicht 21
ARINC-Bus Pinbelegung 48	Updaterate 21
ARINC-Bus: Verkabelung 37	DSUB-15: Digitale Ausgänge 51
Aufwärmphase 7	DSUB-15: Digitale Eingänge 51
Ausschalten des Gerätes 13	DSUB-9
В	Anschlussbelegung Modem 49
	DSUB-9 Pinbelegung
Batterien 15	GPS-Maus 49
Bediensoftware	Durchparametrieren 39
imc STUDIO 18	
Beschaltung BUSDAQ-X: Sleep / Resume 32	E
Blockgröße	Eingangsspannung: BUSDAQ-X DI 34
maximale 36	Einschalten des Gerätes 13
busDAQ Technische Daten 38	Elektro- und Elektronikgerätegesetz 4
BUSDAQ: Pinbelegung CTRL 32	Elektro-Altgeräte Register 4
BUSDAQ-X: Digitale Ausgänge 35	ElektroG 4
BUSDAQ-X: Digitale Eingänge 33	Empfänger
C	GPS 24
CAN	EMV 4
Power via CAN 46	Erdung: Konzept 14
CAN-Bus	Erdung: Versorgung 14
Terminatoren 36	
Verkabelung 36	F
CAN-Bus Interface	FCC-Hinweis 5
Technische Daten 39	Fehlerbehandlung bei Selbststart 28
	Fehlerbehandlung bei Sleep/Resume 28

Fehlermeldung: Abtastzeiten 2/5 18 Fehlermeldungen 4	J
Fernbedienung 14	J1587-Bus DSUB-9 (optional): Pinbelegung 46
Fernbedienung: BUSLOG 32	J1587-Bus Interface
Fernebedienung: BUSDAQ 33	Technische Daten 39
Festplatte 19	J1587-Bus: Verkabelung 37
FlexRay Interface	K
Technische Daten 40	Kabel 5
FlexRay: Pinbelegung 47	Kalibrierung 8
FlexRay-Bus: Verkabelung 37	Kundendienst 6
Funkentstörung 4	
G	L
Garantie 7	Lade-/Entladezyklen 15
Gerät: Sicherungen 15	Lebensdauer Batterien 15
Gerätegruppe 19	LED Bedeutung 31
Gerätesoftware	Leitungen 5
imc STUDIO 18	LEMO Typ 0B 50
Geräteübersicht 19	Lieferumfang 53
Gewährleistung 4	LIN-Bus Interface
Glasfaser-Optik 22	Technische Daten 40
GPS	LIN-Bus: Pinbelegung 46
Prozessvektorvariablen 24	LIN-Bus: Verkabelung 36
RS232 Einstellungen 25	LWL, Fibre Optic 22
GPS:Technische Daten 43	M
GPS-Maus	Messung vorbereiten 18
DSUB-9 Pinbelegung 49	Metall-Stecker
Grafik Display technische Daten 42	Öffnen 52
Gruppe	Schließen 52
Geräteübersicht 19	
H	N
Haftung 7	Nachlaufzeit 26
Hauptschalter 13	NMEA 24
Hotline 6	O
	Öffnen
1	Metall-Stecker 52
imc BUSDAQ-2 17	
imc BUSDAQ-X 18	P
imc BUSLOG 17	Pinbelegung: ARINC-Bus 48
imc STUDIO	Pinbelegung: BUSDAQ CTRL 32
Bediensoftware 18	Pinbelegung: BUSLOG CTRL 31
imc Online FAMOS 20	Pinbelegung: CAN-Bus 46
Inbetriebnahme	Pinbelegung: Digitale Ausgänge 51
Wichtige Hinweise 7	Pinbelegung: Digitale Eingänge 51
Interne Zeitbasis 43	Pinbelegung: FlexRay 47
ISO-9001 4	Pinbelegung: J1587-Bus DSUB-9 (optional) 46
ISOSYNC 14, 15, 22	Pinbelegung: LIN-Bus 46
ISOSYNC:Technische Daten 43	Potentialtrennung: Versorgungs-Eingang 14
	Potentialunterschiede 14

Power Fail 13	_
Power LED 30	Т
Power via CAN 46	Technische Daten
Prozessvektorvariablen	ARINC-Bus Interface 41
GPS 24	CAN-Bus Interface 39
Puffer-Zeitkonstante 13	FlexRay Interface 40
Tarrel Zelakolistante 15	J1587-Bus Interface 39
Q	LIN-Bus Interface 40
Qualitätsmanagement 4	XCPoE Master 41
	Technische Daten busDAQ 38
R	Technische Daten Display 42
RAM Größe 19	Technische Daten: SYNC-FIBRE 44
Real Time Clock 43	Technische Daten:DCF 43
Remote: BUSDAQ 33	Technische Daten:GPS 43
Remote: BUSLOG 32	Technische Daten:ISOSYNC 43
Restriction of Hazardous Substances 4	Technische Daten:Synchronisation 43
RoHS 2 4	Technische Daten:Zeitbasis 43
RS232 Einstellungen	Telefonnummer: Hotline 6
GPS 25	Tischnetzteil 14
RST 13	Transport 10
RTC 43	Transportschaden 10
	Transportsenaden 10
S	U
Schirmung 14	Unfallschutz 5
Schirmung: Signalleitung 14	Unfallverhütungsvorschriften 5
Schirmung: Signalleitungen 14	USV-Funktionalität 13
Schließen	2.6
Metall-Stecker 52	V
Selbststart 28	Vektor 19
Service: Hotline 6	Verkabelung Feldbus 36
Sicherungen 15	Verkabelung: ARINC 37
Sicherungen: Übersicht 15	Verkabelung: FlexRay 37
Sleep Mode 25	Verkabelung: J1587-Bus 37
Sleep mode: Schritt für Schritt 27	Verkabelung: LIN-Bus 36
Sleep Mode: Synchronisation von CANSAS 25	Verkabelung: XCPoE 37
Sleep mode: Wake On CAN 30	Versorgung über CAN 12
Sleep/Resume 28	Versorgung von CANSAS durch busDAQ 12
Sonderspannung 11	Versorgungs-Eingang 14
· · · · · · · · · · · · · · · · · · ·	
Spannungsausfall 13	W
Speicherkarten 19	Wake On CAN 30
Störungen auf dem Signal 14	Wartung 8
Summenabtastrate: Begriff 18	Waste on Electric and Electronic Equipment
SYNC 22	WEEE 4
SYNC Buchse 22	WOC 30
SYNC-FIBRE: Technische Daten 44	
Synchronisation 22	X
Synchronisation von CANSAS im Sleep mode 25	XCPoE Master
Synchronisation: Potentialunterschiede 14	Technische Daten 41
Synchronisation:Technische Daten 43	XCPoE: Verkabelung 37
Synchronisierung 14, 15	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Zeitbasis:Technische Daten 43
Zeitgeber
GPS 24
Zertifikate 4
Zubehör 10